Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Mechanical Properties of Laminated Veneer Lumber Beams Strengthened with CFRP Sheets

https://research.thinkwood.com/en/permalink/catalogue2498
Year of Publication
2010
Topic
Mechanical Properties
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Bakalarz, Michal
Kossakowski, Pawel
Publisher
Sciendo
Year of Publication
2010
Country of Publication
Germany
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Mechanical Properties
Design and Systems
Keywords
Strengthening
Carbon Fibres
Timber Structures
Language
English
Research Status
Complete
Series
Archives of Civil Engineering
Online Access
Free
Resource Link
Less detail

Effect of Laminated Structure Design on the Mechanical Properties of Bamboo-Wood Hybrid Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue1407
Year of Publication
2017
Topic
Mechanical Properties
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Other Materials
Author
Chen, Fuming
Deng, Jianchao
Li, Xingjun
Wang, Ge
Smith, Lee
Shi, Sheldon
Publisher
Springer Berlin Heidelberg
Year of Publication
2017
Country of Publication
Germany
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Other Materials
Topic
Mechanical Properties
Design and Systems
Keywords
Bamboo
Poplar
Analytical Model
Density
MOE
MOR
Shear Strength
Glue Lines
Loading Tests
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
ISSN
1436-736X
Summary
The effects of veneer orientation and loading direction on the mechanical properties of bamboo-bundle/poplar veneer laminated veneer lumber (BWLVL) were investigated by a statistical analysis method. Eight types of laminated structure were designed for the BWLVL aiming to explore the feasibility of manufacturing high-performance bamboo-based composites. A specific type of bamboo species named Cizhu bamboo (Neosinocalamus affinis) with a thickness of 6 mm and diameter of 65 mm was used. The wood veneers were from fast-growing poplar tree (Populus ussuriensis Kom.) in China. The bamboo bundles were obtained by a mechanical process. They were then formed into uniform veneers using a onepiece veneer technology. Bamboo bundle and poplar veneer were immersed in water-soluble phenol formaldehyde (PF) resin with low molecular weight for 7 min and dried to MC of 8–12 % under the ambient environment. All specimens were prepared through hand lay-up using compressing molding method. The density and mechanical properties including modulus of elasticity (MOE), modulus of rupture (MOR), and shearing strength (SS) of samples were characterized under loading parallel and perpendicular to the glue line. The results indicated that as the contribution of bamboo bundle increased in laminated structure, especially laminated on the surface layers, the MOE, MOR and SS increased. A lay-up BBPBPBB (Bbamboo, P-poplar) had the highest properties due to the cooperation of bamboo bundle and poplar veneer. A higher value of MOE and MOR was found for the perpendicular loading test than that for the parallel test, while a slightly higher SS was observed parallel to the glue line compared with perpendicular loading. Any lay-up within the homogeneous group can be used to replace others for obtaining the same mechanical properties in applications. These findings suggested that the laminated structure with high stiffness laid-up on the surface layers could improve the performance of natural fiber reinforced composites.
Online Access
Free
Resource Link
Less detail

Reinforcing the Mechanical Properties of Poplar LVL with Hardwood Veneer Layers, Part I.: Non-Destructive Testing and Modelling the Elastic Properties

https://research.thinkwood.com/en/permalink/catalogue1097
Year of Publication
2014
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Vilpponen, Edit
Komán, Szabolcs
Bejó, László
Year of Publication
2014
Country of Publication
Hungary
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Keywords
Modulus of Elasticity
Reinforcement
Laminate Theory
Deterministic Modeling
Language
Hungarian
Research Status
Complete
Series
Faipar
ISSN
2064-9231
Summary
One opportunity for the value-added utilisation of domestic poplar hybrids is manufacturing LVL products. The mechanical properties of poplar LVL are somewhat inferior to those of traditional Spruce/Pine LVL products. These characteristics may be improved by reinforcing the product using hardwood veneer layers. In this study, the mechanical properties of poplar LVL were improved using beech, turkey oak and tree-of-heaven as reinforcement layers. The mechanical properties of the experimental LVL were determined using vibration testing and destructive ramp testing. The MOE was also estimated using a deterministic model based on the elastic properties and densification of the veneer layers. In this article, the non-destructively measured and model-predicted elastic properties are described. The reinforcement layers improved the MOE significantly. Beech reinforcement performed as anticipated, while turkey oak and tree-of-heaven veneers increased the MOE more drastically than expected. This indicates that these veneers are especially suitable for this purpose. The theoretical model predicted the MOE of the control and beech-reinforced specimen reasonably well, but provided a conservative estimate for the effect of turkey oak and tree-of-heaven.
Online Access
Free
Resource Link
Less detail

Using Non-Destructive Testing to Predict the Mechanical Properties of Glued Laminated Poplar

https://research.thinkwood.com/en/permalink/catalogue2456
Year of Publication
2019
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Martins, Carlos
Dias, Alfredo
Cruz, Helena
Publisher
ICE Publishing
Year of Publication
2019
Country of Publication
Scotland
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Poplar
Non-Destructive Methods
Longitudinal Vibration Method
Transformed Section Method
Modulus of Elasticity
Bending Strength
Full-Scale
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Structures and Buildings
ISSN
1751-7702
Online Access
Free
Resource Link
Less detail

A Comparative Study on the Mechanical Properties of Laminated Veneer Lumber (LVL) Produced from Blending Various Wood Veneers

https://research.thinkwood.com/en/permalink/catalogue2314
Year of Publication
2019
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems

Mechanical Properties of Innovative, Multi-Layer Composite Laminated Panels

https://research.thinkwood.com/en/permalink/catalogue2178
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)

Mechanical Properties of Glued-Laminated Timber with Different Assembly Patterns

https://research.thinkwood.com/en/permalink/catalogue2430
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Wood Building Systems

An Innovative Method Based on Grain Angle Measurement to Sort Veneer and Predict Mechanical Properties of Beech Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue1286
Year of Publication
2018
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Viguier, Joffrey
Bourgeay, Christophe
Rohumaa, Anti
Pot, Guillaume
Denaud, Louis
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Keywords
Modulus of Elasticity
Beech
Grain Angle
Grading
Density
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
Cross-Laminated Timber (CLT) structures exhibit satisfactory performance under seismic conditions. This ispossible because of the high strength-to-weight ratio and in-plane stiffness of the CLT panels, and the capacity ofconnections to resist the loads with ductile deformations and limited impairment of strength. This study sum-marises a part of the activities conducted by the Working Group 2 of COST Action FP1402, by presenting an in-depth review of the research works that have analysed the seismic behaviour of CLT structural systems. Thefirstpart of the paper discusses the outcomes of the testing programmes carried out in the lastfifteen years anddescribes the modelling strategies recommended in the literature. The second part of the paper introduces theq-behaviour factor of CLT structures and provides capacity-based principles for their seismic design.
Online Access
Free
Resource Link
Less detail

Laminated Strand Lumber (LSL) Reinforced by GFRP; Mechanical and Physical Properties

https://research.thinkwood.com/en/permalink/catalogue1311
Year of Publication
2018
Topic
Mechanical Properties
Design and Systems
Material
LSL (Laminated Strand Lumber)
Author
Moradpour, Payam
Pirayesh, Hamidreza
Gerami, Masood
Jouybari, Iman
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
LSL (Laminated Strand Lumber)
Topic
Mechanical Properties
Design and Systems
Keywords
GFRP
Poplar
Modulus of Rupture
Modulus of Elasticity
Shear Strength
Compression Strength
Impact Strength
Water Absorption
Thickness Swelling
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
The effect of glass fiber reinforced polymer (GFRP) on the technical properties of LSL made from poplar (Populus deltoids L.) employing pMDI and UF as binders was investigated. Technical properties such as modulus of rupture (MOR), Modulus of elasticity (MOE), shear strength (SS), compression strength parallel to the grains (CS //), impact strength (IS), water absorption (WA) and thickness swelling (TS) were determined. Results confirmed that resin type and GFRP have significant effects on the LSL properties. It was revealed that the most beneficial effect of GFRP is on MOR, MOE, IS, SS and CS respectively. The Highest properties were obtained by using pMDI as the resin and GFRP as the reinforcement, where properties such as MOR, MOE, IS, SS and CS were improved by 123, 114, 100, 94, and 90%, respectively, compared to control samples. Furthermore, GFRP incorporation led to alteration of fracture place from tension side to compression side. Depending on the treatment type, the WA and TS values of the LVLs improved between 23% to 68% and 19.5% to 78%, respectively.
Online Access
Free
Resource Link
Less detail

Effect of Laminated Structure Design on Physical and Mechanical Properties of Laminated Bamboo Sliver Lumber

https://research.thinkwood.com/en/permalink/catalogue2491
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Other Materials
Application
Wood Building Systems

10 records – page 1 of 1.