Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Alternate Load-Path Analysis for Mid-Rise Mass-Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1233
Year of Publication
2018
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Author
Mpidi Bita, Hercend
Tannert, Thomas
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2018
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Alternate Load-Path Analysis
Disproportionate Collapse
Lateral Loads
Language
English
Conference
Structures Conference 2018
Research Status
Complete
Notes
April 19–21, 2018, Fort Worth, Texas
Summary
This paper presents an investigation of possible disproportionate collapse for a nine-storey flat-plate timber building, designed for gravity and lateral loads. The alternate load-path analysis method is used to understand the structural response under various removal speeds. The loss of the corner and penultimate ground floor columns are the two cases selected to investigate the contribution of the cross-laminated timber (CLT) panels and their connections, towards disproportionate collapse prevention. The results show that the proposed building is safe for both cases, if the structural elements are removed at a speed slower than 1 sec. Disproportionate collapse is observed for sudden element loss, as quicker removal speed require higher moments resistance, especially at the longitudinal and transverse CLT floor-to-floor connections. The investigation also emphasises the need for strong and stiff column-to-column structural detailing as the magnitude of the vertical downward forces, at the location of the removed columns, increases for quicker removal.
Online Access
Payment Required
Resource Link
Less detail

Modelling Alternative Load Paths in Platform-Framed CLT Buildings: A Finite Element Approach

https://research.thinkwood.com/en/permalink/catalogue2113
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Huber, Johannes
Publisher
Luleå University of Technology
Year of Publication
2019
Country of Publication
Sweden
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Robustness
Finite Element Method
Disproportionate Collapse
Alternative Load Paths
Language
English
Research Status
Complete
ISBN
978-91-7790-340-6
ISSN
978-91-7790-341-3
Online Access
Free
Resource Link
Less detail

Disproportionate Collapse Prevention Analyses for Mid-Rise Cross-Laminated Timber Platform-Type Buildings

https://research.thinkwood.com/en/permalink/catalogue2288
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Mpidi Bita, Hercend
Publisher
University of British Columbia
Year of Publication
2019
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Mid-Rise
Structural Performance
Robustness
Platform-Type Buildings
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Comparative Life-cycle Assessment of a Mass Timber Building and Concrete Alternative

https://research.thinkwood.com/en/permalink/catalogue2429
Year of Publication
2020
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: Numerical Models for Post-Tensioned Shear Wall System with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue2601
Year of Publication
2019
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2019
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Design and Systems
Seismic
Keywords
Pres-Lam
Seismic Design
Earthquake
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy in modern urban centers have moved towards the development of new types of so called “resilient” or “low damage” structural systems. Such systems reduce the damage to the structure during an earthquake while offering the same or higher levels of safety to occupants. One such structural system in mass timber construction is the “Pres-Lam” system developed by Structural Timber Innovation Company (STIC) and Prestressed Timber Limited (PTL), both from New Zealand. FPInnovations has acquired the Intellectual Property rights for the Pres-Lam system for use in Canada and the United States.
Online Access
Free
Resource Link
Less detail

Numerical Analyses of High- and Medium-Rise CLT Buildings Braced with Cores and Additional Shear Walls

https://research.thinkwood.com/en/permalink/catalogue1890
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Polastri, Andrea
Pozza, Luca
Loss, Christiano
Smith, Ian
Editor
Cruz, Paulo J.S.
Publisher
CRC Press
Year of Publication
2016
Country of Publication
United Kingdom
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Mechanical Properties
Keywords
Panels
Multi-Storey
Analytical modeling
Language
English
Conference
International Conference on Structures and Architecture
Research Status
Complete
Series
Structures and Architecture: Beyond their Limits
Notes
Proceedings of the Third International Conference on Structures and Architecture (ICSA2016), July 27-29, 2016, Guimaraes, Portugal
p. 128-136
ISBN
978-1-138-02651-3
Summary
In the last twenty years CLT (cross-laminated timber) panels have become quite widely employed to build multi-storey buildings often characterized by the presence of many internal and perimeter shear walls. Building superstructures in which beam-and-column frameworks resits effects of gravity loads and core substructures and exterior CLT shear walls resist effects of lateral forces have been found structurally effective. Advantages of such structural arrangements can include creation of large interior spaces, high structural efficiency, and material economies. Here the behaviour of multi-storey buildings braced with CLT cores and additional CLT shear walls is examined based on numerical analyses. Two procedures for calibrating numerical analysis models are proposed and discussed here. The first approach is to use information from Eurocode 5, and the second approach is to use specifically applicable experimental data obrained through laboratory studies. Technically different ways of connecting CLT panels in order to obtain suitably stiff horizontal diaphragms are also presented.
Online Access
Free
Resource Link
Less detail

Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings

https://research.thinkwood.com/en/permalink/catalogue2465
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Chen, Zhongjia
Gu, Hongmei
Bergman, Richard
Liang, Shaobo
Publisher
MDPI
Year of Publication
2020
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Cradle-to-Grave
Life-Cycle Assessment
Reinforced Concrete
Language
English
Research Status
Complete
Series
Sustainability
Online Access
Free
Resource Link
Less detail

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: High Energy Performance Six-Storey Wood-Frame Building: Field Monitoring

https://research.thinkwood.com/en/permalink/catalogue2599
Year of Publication
2019
Topic
Energy Performance
Design and Systems
Material
Light Frame (Lumber+Panels)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Energy Performance
Design and Systems
Keywords
Mid-Rise
High-Rise
Indoor Environmental Conditions
Durability
Vertical Movement
Language
English
Research Status
Complete
Summary
This monitoring study was initiated to collect performance data from a highly energy efficient, six-storey building located in the coastal climate of British Columbia. This work focuses on the following objectives by installing sensors during the construction: · To provide information about the indoor environment of a highly energy efficient building · To provide field data about the durability performance of an innovative high energy efficiency exterior wall solution for mid-rise wood-frame construction · To provide information on the amounts of vertical movement in wood-frame exterior walls and interior walls below a roof/roof deck
Online Access
Free
Resource Link
Less detail

Bamboo Reinforced Glulam Beams: An Alternative to CFRP Reinforced Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue640
Year of Publication
2013
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Echavarria, Cesar
Echavarría, Beatriz
Cañola, Hernán
Publisher
Scientific.net
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Keywords
Bamboo
CFRP
Load-Deformation
Reinforcement
Stiffness
Strength
Language
English
Research Status
Complete
Series
Advanced Materials Research
Summary
A research study was undertaken to investigate the mechanical performance of glulam beams reinforced by CFRP or bamboo. Local reinforcement is proposed in order to improve the flexural strength of glulam beams. The glulam beam is strengthened in tension and along its sides with the carbon fiber-reinforced polymer CFRP or bamboo. A series of CFRP reinforced glulam beams and bamboo reinforced glulam beams were tested to determine their load-deformation characteristics. Experimental work for evaluating the reinforcing technique is reported here. According to experiment results, the CFRP and bamboo reinforcements led to a higher glulam beam performance. By using CFRP and bamboo reinforcements several improvements in strength may be obtained.
Online Access
Free
Resource Link
Less detail

Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach

https://research.thinkwood.com/en/permalink/catalogue1209
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Liu, Ying
Guo, Haibo
Sun, Cheng
Chang, Wen-Shao
Publisher
MDPI
Year of Publication
2016
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Life-Cycle Assessment
Cradle-to-Grave
China
Cold Regions
Severe Cold Regions
Energy Consumption
Mid-Rise
Residential
Language
English
Research Status
Complete
Series
Sustainability
Summary
Timber building has gained more and more attention worldwide due to it being a generic renewable material and having low environmental impact. It is widely accepted that the use of timber may be able to reduce the embodied energy of a building. However, the development of timber buildings in China is not as rapid as in some other countries. This may be because of the limitations of building regulations and technological development. Several new policies have been or are being implemented in China in order to encourage the use of timber in building construction and this could lead to a revolutionary change in the building industry in China. This paper is the first one to examine the feasibility of using Cross Laminated Timber (CLT) as an alternative solution to concrete by means of a cradle-to-grave life-cycle assessment in China. A seven-storey reference concrete building in Xi’an was selected as a case study in comparison with a redesigned CLT building. Two cities in China, in cold and severe cold regions (Xi’an and Harbin), were selected for this research. The assessment includes three different stages of the life span of a building: materialisation, operation, and end-of-life. The inventory data used in the materialisation stage was mostly local, in order to ensure that the assessment appropriately reflects the situation in China. Energy consumption in the operation stage was obtained from simulation by commercialised software IESTM, and different scenarios for recycling of timber material in the end-of-life are discussed in this paper. The results from this paper show that using CLT to replace conventional carbon intensive material would reduce energy consumption by more than 30% and reduce CO2 emission by more than 40% in both cities. This paper supports, and has shown the potential of, CLT being used in cold regions with proper detailing to minimise environmental impact.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.