Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Design Options for Three- and Four-Storey Wood School Buildings in British Columbia

https://research.thinkwood.com/en/permalink/catalogue2373
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Author
Bevilacqua, Nick
Dickof, Carla
Wolfe, Ray
Gan, Wei-Jie
Embury-Williams, Lynn
Organization
Fast + Epp
Wood Works! BC
Thinkspace
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Construction
Education
School Buildings
Mass Timber
Multi-Storey
Building Code
Fire Protection
Language
English
Research Status
Complete
Summary
This study illustrates the range of possible wood construction approaches for school buildings that are up to four storeys in height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This study is closely related to the report Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction prepared by GHL Consultants, which explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys, while also imposing limits on the overall floor area. As such, the reader is referred to the GHL report for further information regarding building code compliance (with a particular emphasis on fire protection) for wood school buildings.
Online Access
Free
Resource Link
Less detail

Mass Timber Construction as an Alternative to Concrete and Steel in the Australia Building Industry: A Pestel Evaluation of the Potential

https://research.thinkwood.com/en/permalink/catalogue67
Year of Publication
2015
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Kremer, Paul
Symmons, Mark
Publisher
Taylor&Francis Online
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
Australia
Construction
Market
Language
English
Research Status
Complete
Series
International Wood Products Journal
Summary
The present paper is the first to conceptually assess the viability of mass timber construction (MTC) as an alternative construction material/method in Australia. It fulfills an identified need to examine an innovative construction process providing much needed information concerning the technologies current position and future disruption to traditional construction methods. A common tool used in business management studies, the PESTEL model, Political, Economic, Social, Technological, Environmental and Legal is employed to provide structure for a strategic analysis of the technology. Mass timber construction clearly demonstrates some advantages including cost savings, primarily in the reduction in on-site labour costs; a lower environmental impact and use of a renewable resource; and possibility of improved amenity and reduced running costs for owners and occupiers. The estimated market potential for MTC in Australia indicates that a local plant might be viable as the market grows, and warrants funding to underpin a full feasibility assessment.
Online Access
Free
Resource Link
Less detail

Investigating the Performance of the Construction Process of an 18-storey Mass Timber Hybrid Building

https://research.thinkwood.com/en/permalink/catalogue1269
Year of Publication
2017
Topic
General Information
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Kasbar, Mohamed
Organization
University of British Columbia
Year of Publication
2017
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
General Information
Market and Adoption
Keywords
Brock Commons
Construction
Efficiency of Construction
Language
English
Research Status
Complete
Summary
The use of mass timber in high rise construction is an innovation. Mass timber construction has influential benefits including a lower overall construction time, a lower environmental impact, the use of renewable resource and an improved aesthetics. Despite the mentioned benefits, mass timber is not the traditional material for low to mid-rise commercial, institutional and residential construction in Canada. This is partially due to the need to explore the efficiency of mass timber construction relative to traditional construction. Detailed quantitative documentation of successful construction projects assists organisations planning mass timber high-rise projects by understanding and quantifying the advantages to ensure the viability of the construction process. This research project aims to understand the performance of mass-timber construction in the context of a construction manager, particularly the time saved due to completion of structural and envelope systems early. The case study chosen for this thesis is the tallest mass timber hybrid building in the world: Tallwood House. The research team studied the project in a macro-level perspective to investigate the building elements as single entities. Moreover, a micro-level study focuses on the performance of every level of the following elements: mass timber structure, envelope cladding systems and cross-laminated timber drywall encapsulation. The macro-level study investigates: (1) The production rate of the various building elements, (2) The coordination between structural trades to build a heavily pre-fabricated building using a single crane, and (3) The labor efforts per discipline. Moreover, the micro-level study investigates: (4) The variability of productivity of all levels, (5) A statistical investigation of three factors on cross-laminated timber installation, (6) Schedule reliability of preliminary planned schedule relative to the construction schedule (actual progress), (7) Earned value analysis, and (8) Planned percent complete to study the reliability of weekly work plans relative to construction schedules. All metrics were validated by the senior project manager through a discussion and confirmation of the inputs, findings and conclusions drawn. The claimed contribution of this research is an advanced state of knowledge about mass timber by exploring the efficiency of the construction process.
Online Access
Free
Resource Link
Less detail

Solution for Mid-Rise Wood Construction: Apartment Fire Test with Encapsulated Lightweight Wood Frame Construction

https://research.thinkwood.com/en/permalink/catalogue344
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Mid-Rise
Encapsulation
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. As part of this project, four large-scale fire experiments were conducted to evaluate the fire performance of two forms of encapsulated combustible structural wood systems, a lightweight wood-frame (LWF) system (2 experiments [3]) and a crosslaminated timber (CLT) system (1 experiment [4]). The fourth experiment [5] involved a test structure constructed using a steel frame system described below. Each experiment involved construction of a test set-up of an unsprinklered full-size apartment unit, intended to represent a portion of a mid-rise (e.g. six-storey) building. This report provides the results of the test with an encapsulated LWF setup representing an apartment in a mid-rise (e.g. six-storey) building.
Online Access
Free
Resource Link
Less detail

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: High Energy Performance Six-Storey Wood-Frame Building: Field Monitoring

https://research.thinkwood.com/en/permalink/catalogue2599
Year of Publication
2019
Topic
Energy Performance
Design and Systems
Material
Light Frame (Lumber+Panels)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Energy Performance
Design and Systems
Keywords
Mid-Rise
High-Rise
Indoor Environmental Conditions
Durability
Vertical Movement
Language
English
Research Status
Complete
Summary
This monitoring study was initiated to collect performance data from a highly energy efficient, six-storey building located in the coastal climate of British Columbia. This work focuses on the following objectives by installing sensors during the construction: · To provide information about the indoor environment of a highly energy efficient building · To provide field data about the durability performance of an innovative high energy efficiency exterior wall solution for mid-rise wood-frame construction · To provide information on the amounts of vertical movement in wood-frame exterior walls and interior walls below a roof/roof deck
Online Access
Free
Resource Link
Less detail

Solution for Mid-Rise Wood Construction: Full-Scale Standard Fire Resistance Tests of Wall Assemblies for Use in Lower Storeys of Mid-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue346
Year of Publication
2014
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Author
Lafrance, Pier-Simon
Berzins, Robert
Leroux, Patrice
Su, Joseph
Lougheed, Gary
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Topic
Design and Systems
Fire
Keywords
Mid-Rise
Full Scale
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. The effectiveness of the encapsulation approach in limiting the involvement of wood structural materials in fires was demonstrated in this research project through bench-, intermediate- and full-scale fire experiments. These results for encapsulated lightweight wood-frame (LWF) systems and encapsulated cross-laminated timber (CLT) systems are documented in a series of reports [3, 4, 5, 6]. In addition to developing the encapsulation approach for protecting the wood structural materials to meet the above code intent, research was undertaken to examine standard fire resistance of encapsulated wood structural assemblies for use in mid-rise wood/timber buildings. One of the major differences between structural LWF assemblies used in mid-rise wood buildings (5-6 storeys) and low-rise wood buildings (= 4 stories) is the wall assemblies for the lower storeys. For mid-rise wood buildings, loadbearing wall assemblies on the lower storeys have to be designed to resist higher axial loads due to the self-weight of the upper storeys, which often result in the need for larger-size stud members and/or a greater number of studs, and higher lateral loads in case of seismic events or wind loads, which often requires the use of wood shear panels within the wall assembly. These wall assemblies very often will need to meet standard fire resistance requirements, and therefore, information regarding their standard fire-resistance ratings should be developed. This report documents the results of fullscale furnace tests conducted to develop standard fire-resistance ratings of encapsulated LWF assemblies for use in mid-rise applications.
Online Access
Free
Resource Link
Less detail

A Comparative Analysis of Three Methods Used for Calculating Deflections for Multi-Storey Wood Shearwalls

https://research.thinkwood.com/en/permalink/catalogue1719
Year of Publication
2016
Topic
Mechanical Properties
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Wood Building Systems
Author
Newfield, Grant
Wang, Jasmine
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Wood Building Systems
Topic
Mechanical Properties
Keywords
Deformation
Drifts
Stiffness
Building Period
Base Shear
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4597-4604
Summary
With the introduction of 5 and 6-storey wood structures into the National Building Code of Canada 2015, it is important that guidance be provided to engineers to ensure that a reasonable design approach can be sought in the design of taller wood structures. The purpose of this technical paper is to compare various methods for calculating building...
Online Access
Free
Resource Link
Less detail

Transition Strategies: Accelerating Social Acceptance and Removing the Barriers to Prefabricated Multi-Storey Timber Urban Infill Developments in Australia Using CLT Construction Systems

https://research.thinkwood.com/en/permalink/catalogue50
Year of Publication
2012
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Lehmann, Steffen
Reinschmidt, Amanda
Mustillo, Lauren
Organization
Forest and Wood Products Australia
Year of Publication
2012
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
Australia
Multi-Storey
Social Acceptance
Consumer Behaviour
Housing
Language
English
Research Status
Complete
Summary
This report was commissioned to review and formulate strategies for the accelerated uptake and social acceptance of living in multi-storey cross-laminated timber (CLT)-constructed buildings in infill developments to: remove cultural barriers, meet the sustainability expectations of potential buyers and obtain a better understanding of how we can facilitate the rapid introduction of this innovative construction technology in Australia. An extensive review of literature within the field was conducted to gather an overview of the barriers that inhibit consumers, governments and industry in the uptake and acceptance of CLTconstructed buildings for infill development. Data was collected on CLT buildings worldwide, to build a comprehensive picture of multi-storey timber buildings using CLT-construction systems.
Online Access
Free
Resource Link
Less detail

Mass-Timber Construction in Australia: Is CLT the Only Answer?

https://research.thinkwood.com/en/permalink/catalogue2727
Year of Publication
2020
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems
Author
McGavin, Robert
Dakin, Tony
Shanks, Jon
Publisher
North Carolina State University
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Veneer
Mass Panel
Mass Plywood
Construction
Australia
Language
English
Research Status
Complete
Series
BioResources
Summary
Wood-based mass-panels (WBMP) are emerging as an attractive construction product for large-scale residential and commercial construction. Australia is following the lead of Europe and North America with several recent projects being completed using predominately cross-laminated timber panels (CLT). These sawn timber-based panels offer some key advantages to the construction and sawmilling industry. However, veneer-based mass-panel (VBMP) systems could offer additional benefits including the more efficient use of the available forest resources to produce WBMPs that have equivalent to superior performance to CLT. Research to confirm the expected technical viability of veneer-based systems is required. VBMPs could provide a valuable contribution, alongside CLT, to the Australian timber products market.
Online Access
Free
Resource Link
Less detail

Market Opportunities for Prefabricated Construction Using Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2814
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Organization
BlackBox Offsite Solutions
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Prefabrication
Mass Timber
Light-frame wood
Canada
Research Status
In Progress
Notes
Project contact is Craig Mitchell at Black Box Offsite Solutions
Summary
The study assesses the current state of the prefabrication industry in Canada and identifies key challenges and potential market opportunities in the sector for the increased use of mass timber. This analysis of the current state of the industry examines all forms of prefabrication, with a focus on wood (light wood frame and mass timber) where possible. A more detailed analysis focuses on future mass timber market opportunities in Canada and globally, including prefabricated timber building elements (i.e. structural components, retrofit components, etc.) and building typologies. Recommendations will inform policy decisions and other efforts required to support the further development and adoption of prefabricated timber buildings in Canada.
Less detail

10 records – page 1 of 1.