Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Actuarial Contribution to the Understanding of Insurable Risks Related to Non-residential High-rise Buildings in CLT

https://research.thinkwood.com/en/permalink/catalogue2194
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
Université Laval
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
High-Rise
Non-Residential
Course of Construction Insurance
Research Status
In Progress
Notes
Project contact is Étienne Marceau at Université Laval
Summary
The objective of this project is to identify the risk factors taken into account in the pricing of an insurance contract for a construction site. This project aims to synthesize the quantitative approaches used in practice and presented in academic research for the pricing of home insurance and commercial insurance. Then, we aim to identify the preventive measures that can be taken to reduce the impact of different perils in the insurance of a construction site in wood or other.
Less detail

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: Infrared Imaging for Fire Risks

https://research.thinkwood.com/en/permalink/catalogue2090
Year of Publication
2019
Topic
Fire
Site Construction Management
Application
Wood Building Systems

Business Risk Factors in Wood Construction from Design to Commissioning

https://research.thinkwood.com/en/permalink/catalogue2326
Organization
Université Laval
Country of Publication
Canada
Research Status
In Progress
Notes
Project contact is Yan Cimon at Université Laval
Summary
CIRCERB (Chaire industrielle de recherche sur la construction écoresponsable en bois) has in the past mapped decision-making in public construction projects in Quebec. Using the same mapping approach, the project will highlight the steps in carrying out a timber construction project to identify hot spots where risk is important to the proponent, taking into account all stakeholders (material suppliers, general contractors, specialized contractors, etc.). In addition to presenting a broad picture of the wood construction, the project will identify the elements of the value creation chain on which optimization of business practices would be beneficial for wood construction.
Less detail

Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction

https://research.thinkwood.com/en/permalink/catalogue2374
Year of Publication
2019
Topic
Design and Systems
Market and Adoption
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Organization
GHL Consultants Ltd.
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Fire
Keywords
Building Code
Education
School Buildings
Multi-Storey
Fire Test
Fire Safety
Technical Risk
Process Risk
Mass Timber
Language
English
Research Status
Complete
Summary
This report explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys. Three- and four-storey schools and larger floor areas in wood construction require an Alternative Solution. The report identifies key fire safety features offered by combustible construction materials including tested and currently widely available engineered mass timber products, such as glued-laminated timber and cross-laminated timber. A risk analysis identifies the risk areas defined by the objectives of the British Columbia Building Code (BCBC 2018) and evaluates the level of performance of the Building Code solutions for assembly occupancies vis-à-vis the level of performance offered by the proposed schools up to four storeys in building height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This report is closely related to the study Design Options for Three-and Four-Storey Wood School Buildings in British Columbia, which illustrates the range of possible timber construction approaches for school buildings that are up to four storeys in height.
Online Access
Free
Resource Link
Less detail

Durability of Mass Timber Structures: a Review of the Biological Risks

https://research.thinkwood.com/en/permalink/catalogue1838
Year of Publication
2018
Topic
Environmental Impact
Serviceability
Material
CLT (Cross-Laminated Timber)

Risk Minimization in RTS, with Application to FFTT Timber Construction

https://research.thinkwood.com/en/permalink/catalogue337
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Larsen, Alfred
Organization
University of British Columbia
Year of Publication
2015
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Costs
FFTT
Timber-Steel Hybrid
Analytical Model
Language
English
Research Status
Complete
Summary
The risk posed to a structure from an earthquake may be minimized by changing the design characteristics of the structure to determine the optimal design. A risk measure, the mean value of the cost functions in this thesis, can be determined using reliability methods to construct a loss curve. This formulation includes the effect of uncertainty in all aspects of the cost, including construction and repair given an event. This risk model also requires no prior information to determine the mean cost and does not define a discrete “failure,” instead using a continuum of possible outcomes in determining the mean of the cost functions. The optimization model allows for different search directions and step sizes in the search for the minimum cost, with steepest descent and BFGS search directions currently implemented. These analyses are performed using the Rts software, which has the capability of performing the optimization, risk, and reliability analyses on input structural models.
Online Access
Free
Resource Link
Less detail

Multi-Criteria Optimization of Prefabricated Wood-Concrete Floors for Multi-Storey Buildings Considering the Construction Method

https://research.thinkwood.com/en/permalink/catalogue2667
Topic
Design and Systems
Acoustics and Vibration
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Wood Building Systems
Organization
Université Laval
Country of Publication
Canada
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Wood Building Systems
Topic
Design and Systems
Acoustics and Vibration
Keywords
Sound Insulation
Weight
Construction Time
Environmental Impact
Research Status
In Progress
Notes
Project contact is Luca Sorelli at Université Laval
Summary
This project aims to develop a new prefabricated wood / concrete floor system that is innovative and competitive in multi-storey wood buildings. The design of the floor will be carried out through a multidisciplinary approach that considers the composite action of the precast floor, the integration of sound insulation, vibrations, the weight of the structure, construction time and environmental impact. Among other things, the construction method and the use of ultra high performance green composite concretes with CLT slabs or GLULAM beams will be considered. The methodology includes digital analysis tools and a new method for the design of mixed structures as well as the life cycle tool. The laboratory proof of concept will assess the performance of the optimized floor system and compare it to existing floors.
Resource Link
Less detail

Productivity in Multi-storey Mass Timber Construction

https://research.thinkwood.com/en/permalink/catalogue2096
Year of Publication
2019
Topic
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Multi-Storey Residential Buildings in CLT - Interdisciplinary Principles of Design and Construction

https://research.thinkwood.com/en/permalink/catalogue500
Year of Publication
2014
Topic
Serviceability
Moisture
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Ringhofer, Andreas
Schickhofer, Gerhard
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Moisture
Design and Systems
Keywords
Moisture Ingress
Critical Building Zones
Efficiency of Construction
Multi-Storey
Residential
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Cross-laminated timber (CLT) is a very efficient and powerful building material and thus recently discovered for the erection of multi-storey timber towers. In our paper, we focus on building science and services related topics regarding these constructions. Thereby, we firstly identify moisture ingress as main problem worsening their durability and thus discuss possible detail solutions for both external and internal critical building zones such as flat roof, balcony system and wet rooms. The second main topic we are concentrating in this paper are simple measures to increase the efficiency of CLT constructions by simplifying and improving their structural systems (floors, walls and connections). Both topics are connected by the major importance of interdisciplinary thinking and acting when building with CLT.
Online Access
Free
Resource Link
Less detail

Construction Cost Analysis of High-performance Multi-unit Residential Buidlings in British Columbia

https://research.thinkwood.com/en/permalink/catalogue2792
Year of Publication
2021
Topic
Cost
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Organization
Zero Emissions Building Exchange
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Cost
Energy Performance
Keywords
BC Energy Step Code
Net Zero Energy Ready
Mid-Rise
Passive House
Construction Cost
Language
English
Research Status
Complete
Summary
Does it really cost more to build a high-performance building? Historically, this question has been addressed with theoretical studies based on varying the design of common building archetypes, but nothing beats the real thing. ZEBx, in partnership with BTY Group and seven builders from across BC, has completed a cost analysis of seven high-performance, wood-framed, mid-rise, multi-unit residential buildings that meet Step 4 of the Energy Step Code or the Passive House standard. The results of the study may surprise you!
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.