Skip header and navigation

Refine Results By

10 records – page 1 of 1.

High Energy Performance Six-Storey Wood-Frame Building: Field Monitoring

https://research.thinkwood.com/en/permalink/catalogue1918
Year of Publication
2019
Topic
Energy Performance
Application
Walls
Wood Building Systems
Roofs
Rooms
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Application
Walls
Wood Building Systems
Roofs
Rooms
Topic
Energy Performance
Keywords
Mid-Rise
Durability
Vertical Movement
Indoor Environmental Conditions
Language
English
Research Status
Complete
Summary
This monitoring study aims to generate field performance data from a highly energy efficient building in the west coast climate as part of FPInnovations’ efforts to assist the building sector in developing durable and energy efficient wood-based buildings. A six-storey mixed-use building, with five storeys of wood-frame residential construction on top of concrete commercial space was completed in early 2018 in the City of Vancouver. It was designed to meet the Passive House standard. The instrumentation aimed to gather field data related to the indoor environment, building envelope moisture performance, and vertical movement to address the most critical concerns among practitioners for such buildings.
Online Access
Free
Resource Link
Less detail

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: High Energy Performance Six-Storey Wood-Frame Building: Field Monitoring

https://research.thinkwood.com/en/permalink/catalogue2599
Year of Publication
2019
Topic
Energy Performance
Design and Systems
Material
Light Frame (Lumber+Panels)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Energy Performance
Design and Systems
Keywords
Mid-Rise
High-Rise
Indoor Environmental Conditions
Durability
Vertical Movement
Language
English
Research Status
Complete
Summary
This monitoring study was initiated to collect performance data from a highly energy efficient, six-storey building located in the coastal climate of British Columbia. This work focuses on the following objectives by installing sensors during the construction: · To provide information about the indoor environment of a highly energy efficient building · To provide field data about the durability performance of an innovative high energy efficiency exterior wall solution for mid-rise wood-frame construction · To provide information on the amounts of vertical movement in wood-frame exterior walls and interior walls below a roof/roof deck
Online Access
Free
Resource Link
Less detail

Thermal Performance and Apparent Temperature in School Buildings: A Case of Cross-Laminated Timber (CLT) School Development

https://research.thinkwood.com/en/permalink/catalogue2717
Year of Publication
2020
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Adekunle, Timothy
Publisher
Elsevier
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Apparent Temperature
Thermal Performance
Wet-bulb Globe Temperature
Standard Effective Temperature
Universal Thermal Climate Index
School Buildings
Language
English
Research Status
Complete
Series
Journal of Building Engineering
Summary
This paper examines the performance and apparent temperature in cross-laminated timber (CLT) school buildings. The research presents empirical data on the performance and provides the first set of data on apparent temperature in CLT school buildings. The development is in the New England area of the Northeast of the US. The investigation was conducted in the summertime. The principal aim of the investigation is to evaluate the performance, occupants’ comfort, apparent temperature, and other thermal indices concurrently in CLT school buildings. The research intends to understand if occupants of CLT school buildings are susceptible to thermal stress in summer and assess whether apparent temperatures are consistent with sensation. The study also discusses other indices, practical implications, and applications of the outcomes. To achieve the research aim, the study considered the field measurements of variables. Occupants’ comfort is accessed using the PMV and adaptive methods of various comfort standards. During the survey, the development was occupied from 8am-6pm and partly operated from 7pm-7am. The mean temperatures during the occupied and non-occupied periods varied from 22.1°C-22.4°C. The overall RH was 59.2%. The PMV range and sensation showed the occupants were comfortable. Approximately 80% of the users were satisfied with the thermal environment. The temperatures were within the acceptable bands of ASHRAE-55, CIBSE TM52, and EN16798-1 thermal comfort models. The results showed that the apparent temperatures are consistent with the outcomes of the sensation at different periods. The mean indices ranged from 18.8°C-23.5°C. The study recommends that further research should be conducted on occupants’ comfort and heat indices in school buildings during the first few hours of occupation to understand changes that occupants can make to remove unwanted heat from the thermal environment. The study also recommends that various designers should consider heat stress analyses along with thermal comfort assessment at the design phase to determine possible interventions to improve the thermal environment of schools and other buildings.
Online Access
Free
Resource Link
Less detail

Timber Buildings with Enhanced Energy and Seismic Performance for the Mediterranean Region

https://research.thinkwood.com/en/permalink/catalogue1637
Year of Publication
2016
Topic
Energy Performance
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Ratajczak, Julia
García, Daniel
Polastri, Andrea
Pernigotto, Giovanni
Prada, Alessandro
Baratieri, Marco
Gasparella, Andrea
Benedetti, Cristina
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Energy Performance
Seismic
Keywords
Dynamic Behaviour
Italy
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3142-3151
Summary
Timber buildings are characterized by a thermal inertia lower than other technological solutions in construction. For this reason, some configurations may lead to higher cooling demand and poorer energy performance in hot climates, such as the Mediterranean ones. Possible improvement interventions often regard additional thermal mass but, if not accurately designed, they can worse significantly structural and seismic perfo rmance of timber buildings - which is of primary importance in many Italian regions. In this framework, the TimBEESt project studied some technological solutions for timber buildings in Light Timber Frame and Cross-Laminated Timber, able to improve the dynamic behaviour of the opaque components without worsening their seismic performance. First, the Italian territory was analysed in order to find classes of climate and seismic solicitations and energy and structural performances of reference LTF and CLT building models were simulated. Then, for each Italian province, specific interventions and improvements were defined and evaluated.
Online Access
Free
Resource Link
Less detail

Structural Health Monitoring and Post-Occupancy Performance of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2290
Topic
Serviceability
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Environmental Impact
Keywords
Durability
Monitoring
Livability
Research Status
In Progress
Notes
Project contact is Mariapaola Riggio.
Summary
A key question about new generation taller wood buildings is how they will perform over time in terms of durability and livability. This project will determine how best to measure these qualities by selecting sensors, determining testing and measurement protocols, and implementing testing assemblies in selected CLT buildings in Oregon. Future research will use the knowledge developed through this project to carry out post-occupancy monitoring, generating valuable new insights into building performance.
Less detail

Environmental Performance of Timber Constructions Located in Highly Utilised Area - Based on Realised Buildings Made of Sawn Timber or CLT

https://research.thinkwood.com/en/permalink/catalogue1642
Year of Publication
2016
Topic
Environmental Impact
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Yeh, Yu-hsiang
Chiao, Chih-kang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Energy Performance
Keywords
Life-Cycle Assessment
Multi-Storey
Reinforced Concrete
Steel
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3253-3260
Summary
The purpose of this research is to evaluate the environmental performance of various timber constructions that have been realised within intensively utilised area in recent years. The appraisal is carried out by means of life cycle assessment (LCA) and covers different timber constructions, mainly the multi-storey building. The ultimate goal is to compare their environmental performance to the outcomes of other constructions like reinforced concrete (RC) and steel construction (SC). The environmental burdens caused by constructions are evaluated based on the framework of LCA. First, the material inventory of selected building projects is established. The scope is emphasised on the primary structural elements such as columns, beams, deck, load-bearing wall and roof. Secondary components, facility and decoration are eliminated out of the research boundary. Based on the material inventory, the impact assessment is carried out to preliminarily calculate the embodied outcome of the timber constructions. The environmental implications of structural elements during early life cycle stages are evaluated. Then, the effect of both disposal and material recycling is integrated in the LCA, including reuse or recovery of the structural wooden components. The LCA takes into account different disposal scenarios associated with construction and demolition waste (C&DW). By doing so, the LCA is the so-called ‘from cradle to gate’ and ‘gate to cradle’, without consideration upon the using phase. Among numerous environmental indictors, this research quantifies and discusses the energy consumption and global warming potential (GWP) of the timber buildings only. The five-storey timber building located in urban context is a pioneer project in Taiwan. This building applies crosslaminated-timber (CLT) as the primary structural elements and takes over tremendous loading circumstances. It demonstrates not only the engineering feasibility of CLT for architectural design but also the utilising compatibility of wooden house in urban context. The environmental evaluation proofs the ecological efficiency of timber buildings. In addition, this study compares the environmental performance of timber constructions and other materials. Alternative building models made of RC and steel are developed and intended for further LCA. The LCA results demonstrate that timber constructions cause significantly less impacts than RC and SC do. Timber constructions exhibit carbon sequestration effect, which is unique among three materials. Meanwhile, timber constructions consume only about 20% energy of the RC and SC. While possessing similar form and functionality, timber constructions exhibit better eco-efficiency compared to other generally used materials. When the material recycling is taken into account, the life-cycle eco-efficiency of timber structures is further significant. Wooden constructions can be energy-neutral or even energy-productive, depending on the recycling strategies.
Online Access
Free
Resource Link
Less detail

Passive Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue24
Year of Publication
2013
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Author
Helling, Håkan
Janols, Henrik
Brännström, Matias
Organization
Dalarna University
Year of Publication
2013
Country of Publication
Sweden
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Energy Performance
Keywords
Climate
Concrete
Construction
Costs
Economic Analysis
Passive House
Language
English
Research Status
Complete
Summary
In this project, Stora Enso’s newly developed building system has been further developed to allow building to the Swedish passive house standard for the Swedish climate. The building system is based on a building framework of CLT (Cross laminated timber) boards. The concept has been tested on a small test building. The experience gained from this test building has also been used for planning a larger building (two storeys with the option of a third storey) with passive house standard with this building system.
Online Access
Free
Resource Link
Less detail

Thermo-Energetic Performance of Wooden Dwellings: Benefits of Cross-Laminated Timber in Brazilian Climates

https://research.thinkwood.com/en/permalink/catalogue2691
Year of Publication
2020
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Nunes, Gustavo
Moura, Jorge Daniel de Melo
Güths, Saulo
Atem, Camila
Giglio, Thalita
Publisher
Elsevier
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Brazil
Eucalyptus
Thermo-Energetic Performance
Residential
Climate
Language
English
Research Status
Complete
Series
Journal of Building Engineering
Summary
This research focused on studies of the cross-laminated timber (CLT) construction system and, in particular, on an innovative panel composition of eucalyptus (Eucalyptus grandis) heartwood, which is considered in Brazil as a low-added-value material that is often discarded or used for less noble purposes. The aim of this study was to investigate the thermo-energetic performance of CLT panels for use in low-income housing under several different climate conditions. The research was based on the simulation method of the Brazilian Technical Regulation of Quality for the Energy Efficiency Level of Residential Buildings (RTQ-R). The results, based on 72 parametric simulations, proved that CLT panels made of eucalyptus heartwood have significant potential for thermo-energetic improvement in various housing types under diverse climatic conditions. The simulated envelope combinations showed that in Curitiba (bioclimatic zone 1), it is important to associate 5-layered CLT panels with 10 cm thermal insulation; in São Paulo (bioclimatic zone 3), the envelope should be provided with low solar absorptance and 5-layered CLT panels without thermal insulation; and in Belém (bioclimatic zone 8), in addition to the low solar absorptance in the envelope, the CLT panels should be composed of only three layers and without thermal insulation. It was concluded that the innovative CLT construction system with low-added-value eucalyptus heartwood is a very promising technology for Brazilian dwellings that are more energy efficient, with further studies on mechanical behavior being necessary for its consolidation in the country.
Online Access
Free
Resource Link
Less detail

Demonstration of Fire Performance of Durable Wood Strand Mass Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2573
Topic
Fire
Material
Other Materials
Organization
Washington State University
University of Minnesota Duluth
Country of Publication
United States
Material
Other Materials
Topic
Fire
Keywords
Wood Strand Mass Timber Panel
Thermal Modification
Fire Performance
ASTM E119 test standard
Research Status
In Progress
Notes
Project contact is Vikram Yadama at Washington State University
Summary
Lumber yields from small diameter timber (SDT), such as ponderosa and lodge pole pine and grand fir, proposed in this study, are significantly lower (
Less detail

Improving Thermal Efficiency in Lightweight Construction: Mass Timber as Thermal Mass

https://research.thinkwood.com/en/permalink/catalogue1915
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Ceilings
Roofs
Author
Dewsbury, Mark
Publisher
Forest & Wood Products Australia
Year of Publication
2016
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Ceilings
Roofs
Topic
Energy Performance
Keywords
Thermal Efficiency
Lightweight
Low-Rise
Mid-Rise
Low-Energy
Language
English
Research Status
Complete
Series
Market Access, Project Number: PNA289-1213a
ISBN
978-1-925213-40-9
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.