Skip header and navigation

10 records – page 1 of 1.

Correlation Between Sound Insulation and Occupants' Perception - Proposal of Alternative Single Number Rating of Impact Sound, Part II

https://research.thinkwood.com/en/permalink/catalogue2134
Year of Publication
2017
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors

European Timber Sound Insulation Atlas

https://research.thinkwood.com/en/permalink/catalogue842
Year of Publication
2017
Topic
Acoustics and Vibration
Application
Wood Building Systems
Author
Schmid, Hansueli
Späh, Moritz
Martin, Noemi
Naßhan, Klaus
Organization
Silent Timber Build
Year of Publication
2017
Country of Publication
Sweden
Format
Report
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Europe
Sound Insulation
Language
English
Research Status
Complete
Summary
The objective of this work package is to provide an acoustic performance knowledge database of European timber building constructions. In a first step a methodology for structuring the planned data base will be developed. The database will be fed with existing examples from the different European timber building regions. These examples will be grouped into similar solutions and sound insulation performance. After reprocessing the data the different construction systems will be optimized in WP 2. An interface to the borad public of the database will then be developed. This user friendly and appealing front-end of the European Timber Sound Insulation Atlas (EATSI-Atlas) will provide information on various evaluation criteria, including expected future European target values.
Online Access
Free
Resource Link
Less detail

Apparent Sound Insulation in Wood-Framed Buildings

https://research.thinkwood.com/en/permalink/catalogue1952
Year of Publication
2017
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Walls
Floors

Modelling Prerequisites – FEM/SEA Impact and Airborne Sound

https://research.thinkwood.com/en/permalink/catalogue840
Year of Publication
2017
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Author
Bard, Delphine
Negreira, Juan
Guigou-Carter, Catherine
Borello, Gerard
Kouyoumji, Jean-Luc
Speranza, Alice
Coguenanff, Corentin
Hagberg, Klas
Organization
Silent Timber Build
Year of Publication
2017
Country of Publication
Sweden
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Europe
Finite Element Model
Frequencies
SEA Model
Prediction
Impact Sound Insulation
Airborne Sound Insulation
Language
English
Research Status
Complete
Summary
This report comprises reslts from the work done within work package 1 in the WWN+ project "Silent Timber Build", WP 1: Prediction tools, low and high frequencies. The aim from this WP was to develop prediction tools applied for wooden constructions. Included in this is also to create necessary basis for enough accuracy for any European wood construction. It implies development of new methods but also to understand how input forces primarily from the tapping machine affects the resuts of impact sound levels. The WP also describes how models are developed, in order to provide expected accuracy and then how to further improve the models in order to optimize floor and wall assemblies. The Work Package has been closely linked to WP 2 but also WP3. Using the reults from WP 2, the prediction model results can be compared to expected values for any European construction. From that optimization of floor assemblies and refining of the model is possible.
Online Access
Free
Resource Link
Less detail

Study on Effect of Floor Impact Sound Reduction by Double Ceiling on CLT Panel

https://research.thinkwood.com/en/permalink/catalogue1803
Year of Publication
2017
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Tanaka, Manabu
Murakami, Takeshi
Kasai, Yusuke
Publisher
J-STAGE
Year of Publication
2017
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Panels
Sound Reduction Index
Experimental Tests
Impact Sound
Language
Japanese
Research Status
Complete
Series
Japanese Architectural Institute Environmental Papers
ISSN
1881 - 817 X
Online Access
Free
Resource Link
Less detail

Improving the Sound Absorption of Cross-Laminated Timber Panels Using Resonant Absorbent Layer

https://research.thinkwood.com/en/permalink/catalogue1265
Year of Publication
2017
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Author
Logawa, Banda
Organization
University of British Columbia
Year of Publication
2017
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Topic
Acoustics and Vibration
Keywords
Sound Absorption
In Situ
Reverberation Time
Speech Intelligibility Index
Language
English
Research Status
Complete
Summary
Developed in the mid-1990s in Austria and Germany, Cross Laminated Timber (CLT) is an innovative wood product known for its strength in both orthogonal directions, and its dimensional stability, making it a sustainable alternative to concrete slabs. CLT is created through the cross-lamination process, which glues together odd number of layers of wood planks placed in orthogonally alternating directions. With the growing interest in the application of CLT in North America, numerous studies has been conducted to characterize the acoustical properties of CLT panels. However, most of them focused on the sound-transmission aspect of CLT, very few on the sound absorption. This thesis will explore the sound-absorption characteristics of CLT, the effect on overall room-acoustical conditions, the utilization of resonant sound-absorbing layers on CLT to make it more sound-absorptive, and proposed solutions to improve this performance aspect. To demonstrate the low sound absorption and poor acoustical conditions in rooms with exposed and untreated CLT panels, several in-situ reverberation-time (RT) measurements were conducted in multiple buildings in British Columbia. Average sound-absorption coefficients and estimated Speech Intelligibility Indices (SII) were calculated as baseline performance measures for this study. Based on the results from five different buildings, involving 8 rooms configurations, average sound-absorption coefficients for exposed CLT panels are approximately between 0.02 to 0.13, resulting in barely acceptable conditions for verbal communication. To optimize the sound-absorption characteristics of prototype CLT panels, a transfer-matrix model has been developed to predict the performance of multi-layered CLT panels. This theoretical model was then validated by using three different sound-absorption measurement methods (impedance tube, spherical decoupling, and reverberation chamber) for multiple HR array configurations. After identifying the important parameters of an HR system and their effects on performance, a final prototype configuration with Helmholtz Resonator Array was then created with the goal of improving the room- acoustical performance of CLT, as well as responding to input from the CLT manufacturers and experts. Both the theoretical and experimental results confirmed that the proposed solution has the required sound-absorption performance and achieves all research objectives.
Online Access
Free
Resource Link
Less detail

Apparent Sound Insulation in Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1276
Year of Publication
2017
Topic
Acoustics and Vibration
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hoeller, Christoph
Mahn, Jeffrey
Quirt, Dave
Schoenwald, Stefan
Zeitler, Berndt
Organization
National Research Council of Canada
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Connections
Keywords
Airborne Sound Transmission
Adhesives
Language
English
Research Status
Complete
Summary
This Report presents the results from experimental studies of airborne sound transmission, together with an explanation of calculation procedures to predict the apparent airborne sound transmission between adjacent spaces in a building whose construction is based on cross-laminated timber (CLT) panels. There are several types of CLT constructions which are commercially available in Canada, but this study only focused on CLT panels that have adhesive between the faces of the timber elements in adjacent layers, but no adhesive bonding the adjacent timber elements within a given layer. There were noticeable gaps (up to 3 mm wide) between some of the timber elements comprising each layer of the CLT assembly. These CLT panels could be called "Face-Laminated CLT PAnels" but are simply referred to as CLT panels in this Report. Another form of CLT panels has adhesive between the faces of the timber elements in adjacent layers as well as adhesive to bond the adjacent timber elements within a given layer. These are referred to as "Fully-Bonded CLT Panels" in this Report.
Online Access
Free
Resource Link
Less detail

Acoustic Testing and Wood Supply for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1830
Year of Publication
2017
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Walls
Roofs
Wood Building Systems
Organization
ARUP
StructureCraft
InterTek
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Walls
Roofs
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Sound Transmission
Impact Noise Transmission
Concrete Topping
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
A. Shop Drawings and Details for Tests B. Sound and Impact Test Results Summary C. Test 1: Sound and Impact Transmission Test - CLT D. Test 2: Sound and Impact Transmission Test - Concrete Topping E. Test 3a: Sound and Impact Transmission Test - Marmoleum F. Test 3b: Sound and Impact Transmission Test - Marmoleum G. Test 4: Sound and Impact Transmission Test - Carpet H. Test 5a: Sound and Impact Transmission Test - Luxury Vinyl Plank I. Test 5b: Sound and Impact Transmission Test - Luxury Vinyl Plank J. Test 6: Sound and Impact Transmission Test - Mechanical Roof
Online Access
Free
Resource Link
Less detail

Acoustic Performance of All-Wood Floor Systems

https://research.thinkwood.com/en/permalink/catalogue1931
Year of Publication
2017
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Floors
Organization
APA
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Sound Transmission Class
Impact Isolation Class
Code
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Acoustic Impact Testing and Waveform Analysis for Damage Detection in Glued Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue771
Year of Publication
2017
Topic
Acoustics and Vibration
Serviceability
Material
Glulam (Glue-Laminated Timber)
Author
Xu, Feng
Wang, Xiping
Teder, Marko
Liu, Yunfei
Publisher
De Gruyter
Year of Publication
2017
Country of Publication
Germany
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Acoustics and Vibration
Serviceability
Keywords
Decay
Delamination
Damage Detection
Moment Analysis
Wavelet Transform
Acoustic Signals
Language
English
Research Status
Complete
Series
Holzforschung
ISSN
1437-434X
Summary
Delamination and decay are common structural defects in old glued laminated timber (glulam) buildings, which, if left undetected, could cause severe structural damage. This paper presents a new damage detection method for glulam inspection based on moment analysis and wavelet transform (WT) of impact acoustic signals. Acoustic signals were collected from a glulam arch section removed from service through impact testing at various locations. The presence and positions of internal defects were preliminarily determined by applying time centroid and frequency centroid of the first moment. Acoustic signals were then decomposed by wavelet packet transform (WPT) and the energy of the sub-bands was calculated as characteristics of the response signals. The sub-bands of 0–375 Hz and 375–750 Hz were identified as the most discriminative features that are associated with decay and delamination and therefore are indicative of the presence of delamination or decay defects. A defect diagnosis algorithm was tested for its ability to identify internal decay and delamination in glulam. The results show that depth of delamination in a glulam member can be determined with reasonable accuracy.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.