Skip header and navigation

4 records – page 1 of 1.

Acoustically-Tested Mass Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue2639
Year of Publication
2020
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Floors
Walls

Facilitation of Acoustics Testing for Sustainable Mass Timber Technologies, Leading to Publication of Open Source Acoustics Data for Standard Acoustics Scenarios

https://research.thinkwood.com/en/permalink/catalogue2629
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Organization
University of Oregon
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Acoustics Testing Facility
Research Status
In Progress
Notes
Project contact is Kevin Van Den Wymelenberg at the University of Oregon
Summary
Our aim is to support the acceptance and increase market share of sustainable mass timber construction technologies such as Cross Laminated Timber (CLT), Mass Plywood Panel (MPP), Glue Laminated Timber (GLT), and Nail Laminated Timber (NLT), by lowering or eliminating barriers due to lack of acoustics data for mass timber construction assemblies. Currently, sustainable mass timber projects carry the cost of required acoustics testing, impairing their economic feasibility. With our new acoustics testing facility, testing supported by this grant will produce common acoustics data on the assemblies most in market demand. These data will be hosted in an online open-access database, supporting rapid growth in this industry. Increasingly specialized testing scenarios will be more easily accommodated, as this facility is located closer to USFS source materials and production facilities than currently operating facilities and is designed specifically for the specialized requirements of testing mass timber assemblies. Since sustainable mass timber technologies allow increased utilization of lower quality timber, and timber with insect damage, increasing the market share of mass timber will increase utilization of USFS timber, specifically that which might otherwise remain on-site unused. With removal of this type of timber, fire load will be lessened as well. Initial testing supported by this grant will include mass timber assemblies constructed with lower quality and smaller dimension timber.
Less detail

Design, Construction, and Maintenance of Mass Timber Post-Tensioned Shear Walls

https://research.thinkwood.com/en/permalink/catalogue2791
Topic
Design and Systems
Seismic
Serviceability
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Topic
Design and Systems
Seismic
Serviceability
Keywords
Post-Tensioned
Self-Centering
Shear Walls
Anchoring
Creep
Research Status
In Progress
Notes
Project contact is Mariapaola Riggio at Oregon State University
Summary
Earthquake engineers are focusing on performance-based design solutions that minimize damage, downtime, and dollars spent on repairs by designing buildings that have no residual drift or “leaning” after an event. The development of timber post-tensioned (PT), self-centering rocking shear walls addresses this high-performance demand. The system works by inserting unbonded steel rods or tendons into timber elements that are prestressed to provide a compressive force on the timber, which will pull the structure back into place after a strong horizontal action. But, because these systems are less than fifteen years old with just four real-world applications, little information is known regarding best practices and optimal methods for engineering design, construction and/or tensioning procedures, and long-term maintenance considerations. This project intends to contribute knowledge by testing both cross-laminated timber (CLT) and mass plywood panel (MPP) walls through testing of anchorage detailing, investigating tensioning procedures for construction, determining the contributions of creep on prestress loss over time, and comparing all laboratory test data to monitoring data from three of the four buildings in which this technology has been implemented, one of which is George W. Peavy Hall at Oregon State University. This will be accomplished by testing small- and full-scale specimens in the A.A. “Red” Emmerson Advanced Wood Products Laboratory, and small-scale specimens in an environmental chamber.
Resource Link
Less detail

Developing an Application for Mass Plywood Panels in Seismic and Energy Wall Retrofit

https://research.thinkwood.com/en/permalink/catalogue2568
Topic
Energy Performance
Seismic
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Organization
University of Oregon
Oregon State University
TallWood Design Institute
Country of Publication
United States
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Topic
Energy Performance
Seismic
Keywords
Retrofit
Assembly
Prefabrication
Research Status
In Progress
Notes
Project contact is Mark Fretz at the University of Oregon
Summary
University of Oregon and Oregon State University are collaborating through TallWood Design Institute (TDI) to upgrade aging, energy inefficient and seismically unprepared multifamily housing by developing a mass plywood (MPP) retrofit panel assembly that employs digital workflows and small diameter logs (down to 5") to create an economically viable energy/seismic retrofit model for the West Coast and beyond. The project has broad potential to support forested federal land management agencies and private forestry by proving a new market for small diameter logs.
Less detail