Skip header and navigation

10 records – page 1 of 1.

Addendum to RR-335: Sound Transmission Through Nail-Laminated Timber (NLT) Assemblies

https://research.thinkwood.com/en/permalink/catalogue1868
Year of Publication
2018
Topic
Acoustics and Vibration
Material
NLT (Nail-Laminated Timber)
Application
Floors
Walls

Analysis on Structureborne Sound Transmission at Junctions of Solid Wood Double Walls with Continuous Floors

https://research.thinkwood.com/en/permalink/catalogue1869
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls

Guide to Calculating Airborne Sound Transmission in Buildings: Fifth Edition, December 2019

https://research.thinkwood.com/en/permalink/catalogue2617
Year of Publication
2019
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Author
Hoeller, Christoph
Quirt, David
Mahn, Jeffrey
Müller-Trapet, Markus
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Apparent Sound Transmission Class
Sound Insulation
Sound Transmission
Concrete
Building Code
Impact Sound
Language
English
Research Status
Complete
Summary
In recent years, the science and engineering for controlling sound transmission in buildings have shifted from a focus on individual assemblies such as walls or floors, to a focus on performance of the complete system. Standardized procedures for calculating the overall transmission, combined with standardized measurements to characterize sub-assemblies, provide much better prediction of sound transmission between adjacent indoor spaces. The International Standards Organization (ISO) has published a calculation method, ISO 15712-1 that uses laboratory test data for sub-assemblies such as walls and floors as inputs for a detailed procedure to calculate the expected sound transmission between adjacent rooms in a building. This standard works very well for some types of construction, but to use it in a North American context one must overcome two obstacles – incompatibility with the ASTM standards used by our construction industry, and low accuracy of its predictions for lightweight wood or steel frame construction. To bypass limitations of ISO 15712-1, this Guide explains how to merge ASTM and ISO test data in the ISO calculation procedure, and provides recommendations for applying extended measurement and calculation procedures for specific common types of construction. This Guide was developed in a project established by the National Research Council of Canada to support the transition of construction industry practice to using apparent sound transmission class (ASTC) for sound control objectives in the National Building Code of Canada (NBCC). However, the potential range of application goes beyond the minimum requirements of the NBCC – the Guide also facilitates design to provide enhanced sound insulation, and should be generally applicable to construction in both Canada and the USA. This publication contains a limited set of examples for several types of construction, to provide an introduction and overview of the ASTC calculation procedure. Additional examples and measurement data can be found in the companion documents to this Guide, namely NRC Research Reports RR-333 to RR-337. Furthermore, the calculation procedure outlined and illustrated in this Guide is also used by the software web application soundPATHS, which is available for free on the website of the National Research Council of Canada (see the references in Section 7 of this Guide for access details).
Online Access
Free
Resource Link
Less detail

In Situ Measured Flanking Transmission in Light Weight Timber Houses with Elastic Flanking Isolators

https://research.thinkwood.com/en/permalink/catalogue231
Year of Publication
2013
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Author
Ågren, Anders
Ljunggren, Fredrik
Organization
Inter-noise
Year of Publication
2013
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Modules
Prefabrication
Sound Insulation
Elastomer Isolators
Language
English
Conference
Inter-noise 2013
Research Status
Complete
Notes
September 15-18, 2013, Innsbruck, Austria
Summary
There is a strong trend to industrially produce multi-storey light weight timber based houses. This concept allows the buildings to be manufactured to a more or less prefabricated extent. Most common types are volume/room modules or flat wall and floor modules. When assembling the modules at the building site, elastomer isolators are used in several constructions to reduce flanking transmission. The sound insulation demands in the Nordic countries are relatively high and therefore the flanking transmission must be well controlled, where elastomer isolators are an alternative. Decoupled radiation isolated walls is another. There are though no working studies or mathematical models of the performance of these isolators. They are only treated as simple mass-springs systems that operate vertically, i.e. one degree of freedom. In this paper there is an analysis of experimentally data of the structure borne sound isolating performance of elastomer isolators that are separating an excited floor from receiving walls. The performance dependence of structure type is also presented. An empirically based regression model of the vibration level difference is derived. The model is based on measurements of six elastomer field installations, which are compared to five comparable installations without elastomers. A goal is that the model can be used for input in future SEN prediction models for modeling of sound insulation.
Online Access
Free
Resource Link
Less detail

Sound Insulation Performance of Elevator Shaft Walls built with Nail-Laminated Timber Panels - Exploratory Tests and Preliminary Results

https://research.thinkwood.com/en/permalink/catalogue364
Year of Publication
2016
Topic
Acoustics and Vibration
Material
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Author
Pirvu, Ciprian
Organization
FPInnovations
Year of Publication
2016
Country of Publication
Canada
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Topic
Acoustics and Vibration
Keywords
Building Codes
Canada
Sound Insulation
Apparent Sound Insulation Class
Language
English
Research Status
Complete
Summary
As 6-storey wood-frame, massive-timber and hybrid wood buildings are increasingly accepted by more jurisdictions across Canada, there is a need to develop reliable elevator shaft designs that meet the minimum structural, fire, and sound requirements in building codes. Elevator shaft walls constructed with wood-based materials have the advantages of material compatibility, use of sustainable materials, and ease of construction. In this exploratory study, selected elevator shaft wall designs built with nail-laminated-timber (NLT) structural elements were tested to investigate their sound insulation performance because little is known about the sound insulation performance of such wall assemblies. The tests were carried out in an acoustic mock-up facility in accordance to standard requirements, and provide preliminary data on the sound insulation performance of elevator shaft walls built with NLT panels. Four different elevator shaft walls built with NLT panels were tested and their measured apparent sound insulation class (ASTC) ratings ranged from 18 to 39 depending on their construction details. Some of the reasons that may have contributed to the ASTC ratings obtained for the elevator shaft walls described in this report as well as recommendations for future designs were provided. It is recommended to continue improving the sound insulation of elevator shaft walls built with NLT panels to meet or exceed the minimum requirements in building codes.
Online Access
Free
Resource Link
Less detail

Experimental Study on Air Tone Interruption Performance of CLT Panel Wall

https://research.thinkwood.com/en/permalink/catalogue1802
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Tanaka, Manabu
Kasai, Yusuke
Murakami, Tsuyoshi
Kawaya, Shoji
Publisher
J-STAGE
Year of Publication
2016
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Acoustics and Vibration
Keywords
Sound Transmission
Panels
Experimental Tests
Sound Insulation
Language
Japanese
Research Status
Complete
Series
Japanese Architectural Institute Environmental Papers
ISSN
1881 - 817 X
Online Access
Free
Resource Link
Less detail

European Timber Sound Insulation Atlas

https://research.thinkwood.com/en/permalink/catalogue842
Year of Publication
2017
Topic
Acoustics and Vibration
Application
Wood Building Systems
Author
Schmid, Hansueli
Späh, Moritz
Martin, Noemi
Naßhan, Klaus
Organization
Silent Timber Build
Year of Publication
2017
Country of Publication
Sweden
Format
Report
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Europe
Sound Insulation
Language
English
Research Status
Complete
Summary
The objective of this work package is to provide an acoustic performance knowledge database of European timber building constructions. In a first step a methodology for structuring the planned data base will be developed. The database will be fed with existing examples from the different European timber building regions. These examples will be grouped into similar solutions and sound insulation performance. After reprocessing the data the different construction systems will be optimized in WP 2. An interface to the borad public of the database will then be developed. This user friendly and appealing front-end of the European Timber Sound Insulation Atlas (EATSI-Atlas) will provide information on various evaluation criteria, including expected future European target values.
Online Access
Free
Resource Link
Less detail

Acoustics: Sound Insulation in Mid-Rise Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue37
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Author
Schoenwald, Stefan
Zeitler, Berndt
King, Frances
Sabourin, Ivan
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Acoustics
Mid-Rise
Sound Insulation
Language
English
Research Status
Complete
Summary
This client report on the acoustics research component regarding sound insulation of elements and systems for mid-rise wood buildings is structured into a main part and four appendices. The main part outlines the background, main research considerations and summarizes conducted research and major outcomes briefly. It is structured like the Acoustics tasks in the Statement of Work of the Mid-rise Wood research project to identify accomplishments. For details on the research, testing and results, the main part references to four appendices that contain more details including test plans, test methods, specimen descriptions and all test data that is vetted so far.
Online Access
Free
Resource Link
Less detail

Direct Impact Sound Insulation of Cross Laminate Timber Floors with and without Toppings

https://research.thinkwood.com/en/permalink/catalogue227
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Zeitler, Berndt
Schoenwald, Stefan
Sabourin, Ivan
Organization
Inter-noise
Year of Publication
2014
Country of Publication
Australia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
North America
Sound Insulation
Concrete Topping
Interlayer
Language
English
Conference
Inter-Noise 2014
Research Status
Complete
Notes
November 16-19, 2014, Melbourne, Australia
Summary
Cross Laminated Timber (CLT), which is well suited for construction of tall buildings, is becoming a more popular construction material in North America. However, to ensure comfortable living conditions, sound insulation measures are necessary. The study presented here compares results of direct impact sound insulation of 5- and 7-ply CLT floors covered with different a concrete toppings on various interlayers. Improvements of up to 21dB in Weighted Normalized Impact Sound Pressure Level (Ln,w) were observed using a newly proposed reference floor for CLTs. Furthermore, the improvements of floor coverings on CLT floors are compared to those achieved on other types of construction, such as the reference concrete floor. The improvements of Ln,w tend to be higher on the concrete floors than on the CLT floors tested. These and other findings will be presented.
Online Access
Free
Resource Link
Less detail

Calculation of Sound Insulation for Hybrid CLT Fabricated with Lumber and LVL and Comparison with Experimental Data

https://research.thinkwood.com/en/permalink/catalogue2216
Year of Publication
2019
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Author
Ju, Zehui
Zhang, Haiyang
Zhan, Tianyi
Hong, Lu
Lin, Yangfan
Lu, Xiaoning
Publisher
EDP Sciences
Year of Publication
2019
Country of Publication
France
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Topic
Acoustics and Vibration
Keywords
Sound Insulation
Language
English
Research Status
Complete
Series
MATEC Web of Conferences
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.