Skip header and navigation

10 records – page 1 of 1.

Analyse de Performance Acoustique et de Résistance au Feu

https://research.thinkwood.com/en/permalink/catalogue2752
Year of Publication
2018
Topic
Acoustics and Vibration
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Organization
Société en commandite NEB
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Acoustics and Vibration
Fire
Keywords
Origine
Fire Resistance
Acoustic Performance
Tall Timber
Multi-Storey
Language
French
Research Status
Complete
Summary
Le présent rapport décrit une partie des activités de recherche et développement (R&D) en lien avec la démonstration de la résistance au feu ainsi que les études sur la performance acoustique effectuées dans le cadre de la construction du bâtiment Origine. Ce bâtiment est la tour résidentielle en bois massif la plus haute au Québec. Sa réalisation a débuté en 2015 à la suite des analyses préliminaires de faisabilité technique-économique qui se sont étalées pendant toute l’année 2014. La construction et l’installation se sont finalisées vers la fin de 2017. En premier lieu, le rapport présente les démarches liées à la réalisation d’un exercice de démonstration d’incendie pour une cage d’escaliers/ascenseur avec une chambre d’habitation adjacente, l’analyse de résultats et les principales conclusions en lien avec la pertinence de l’utilisation du bois massif pour des édifices de grande hauteur. En ce qui concerne la performance acoustique, le rapport présente la méthodologie d’étude et d’analyse des résultats des tests acoustiques pour des assemblages de mur et de plancher utilisés dans le projet Origine. De plus, ce rapport facilite la compréhension des activités réalisées et permet de montrer objectivement la capacité des produits en bois massif à offrir un environnement sécuritaire et confortable aux occupants de bâtiments multi-étagés. Les principaux résultats indiquent que les cages d’escaliers/ascenseur faites en bois massif, conçues pour une résistance au feu équivalente à celle faites en béton, peuvent offrir une excellente performance et servent d’alternatives adéquates pour les bâtiments multi-étagés. En ce qui concerne le développement d’assemblages acoustiques pour les murs et les planchers en bois massif, il a été prouvé qu’une approche multicritère permet d’offrir des solutions performantes à des coûts raisonnables. Finalement, il est clair que ce projet constitue un jalon très important dans le chemin d’acceptation des bâtiments multi-étagés en bois massif au Québec et au Canada. Sa construction, faite presque entièrement en bois, a nécessité de nombreux efforts économiques, de R&D, de conception et d’installation. De plus, les activités réalisées pour l’acceptation de ce type de construction ont permis de mettre en place de nouvelles technologies et des techniques de conception qui faciliteront la réplication de ce type de projet partout en Amérique du Nord.
Online Access
Free
Resource Link
Less detail

Fire Resistance of Timber Framed Floor with Isolated Ceiling Assembly

https://research.thinkwood.com/en/permalink/catalogue685
Year of Publication
2014
Topic
Acoustics and Vibration
Fire
Material
Glulam (Glue-Laminated Timber)
Application
Floors
Ceilings
Author
Park, Joo-Saeng
Lee, Sang-Joon
Yeo, In-Hwan
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Floors
Ceilings
Topic
Acoustics and Vibration
Fire
Keywords
Heavy Impact Sound
Fire Resistance
Sound Insulation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Fire resistance test was performed for a floor assembly, of which stiffness was reinforced by shortening the span of floor joists by adding glulam beam in the middle of the original span, and which an additional ceiling component was installed apart from floor part. These factors are expected to show good insulation performance of timber framed floor against heavy impact sound. From full scale fire test, it is conclude that the designed and manufactured floor achieved 1 hour of fire resistance rating.
Online Access
Free
Resource Link
Less detail

Design Guide for Timber-Concrete Composite Floors in Canada

https://research.thinkwood.com/en/permalink/catalogue2460
Year of Publication
2020
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Material
Timber-Concrete Composite
Application
Floors
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Book/Guide
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Keywords
Shear Connection
Ultimate Limit States
Vibration
Fire Resistance
Language
English
Research Status
Complete
Summary
As part of its research work on wood buildings, FPInnovations has recently launched a Design Guide for Timber-Concrete Composite Floors in Canada. This technique, far from being new, could prove to be a cost-competitive solution for floors with longer-span since the mechanical properties of the two materials act in complementarity. Timber-concrete systems consist of two distinct layers, a timber layer and a concrete layer (on top), joined together by shear connectors. The properties of both materials are then better exploited since tension forces from bending are mainly resisted by the timber, while compression forces from bending are resisted by the concrete. This guide, which contains numerous illustrations and formulas to help users better plan their projects, addresses many aspects of the design of timber-concrete composite floors, for example shear connection systems, ultimate limit state design, vibration and fire resistance of floors, and much more.
Online Access
Free
Resource Link
Less detail

Composite Concrete-CLT Floor Systems for Tall Building Design

https://research.thinkwood.com/en/permalink/catalogue2196
Topic
Acoustics and Vibration
Connections
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Connections
Fire
Mechanical Properties
Keywords
Strength
Fire Resistance
Stiffness
Acoustics
Vibration
Research Status
In Progress
Notes
Project contact is Christopher Higgins at Oregon State University
Summary
This project will optimize the strength, stiffness, vibration characteristics, acoustic qualities and fire resistance of cross-laminated floor systems utilizing a composite concrete and cross-laminated timber product. This project includes development, testing and optimization of an economical shear connector (to connect the CLT panel to the concrete slab) that will be compared with existing screw and steel plate solutions. The resulting prototype floor system will be tested at full scale.
Less detail

Fire Performance Requirements of Non-Load-Bearing Wood-Frame In-Fill Walls in Concrete/Steel Hybrid Buildings. Part 2 - Review of the National Building Code of Canada

https://research.thinkwood.com/en/permalink/catalogue2622
Year of Publication
2013
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Walls
Hybrid Building Systems
Author
Lu, Ling
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Hybrid Building Systems
Topic
Fire
Keywords
Non-Loadbearing
Fire Resistance
Concrete
Steel
Building Code
Fire Performance
Exterior Wall
Sprinklers
Mid-Rise
Language
English
Research Status
Complete
Summary
This project evaluates the National Building Codes of Canada (NBCC) clauses relevant to fire performance and performance requirements of non-load-bearing wood-frame in-fill walls in concrete/steel hybrid buildings. Related clauses in NBCC are reviewed regarding the use of wood components and non-load bearing wall systems in non-combustible buildings. The highlights of this review are: § An exterior non-loadbearing wall assembly with combustible components is allowed in non-combustible construction if: a) Building height is not more than 3 storeys or has a sprinkler system throughout ; b) The interior surfaces of the wall assembly are protected by a thermal barrier ; and c) The wall assembly satisfied the testing criteria for CAN/ULC S134 ; § Combustible interior wall finishes, other than foamed plastics, are allowed in non-combustible construction if the thickness is not greater than 25 mm and their flame spread rating (FSR) is not more than 150 ; § Combustible insulation, other than foamed plastics, is allowed in non-combustible construction if the flame-spread rating not more than 25 ; § Combustible insulation with a FSR not less than 25 and not more than 500 is allowed in exterior and interior walls of non-combustible construction if the building is non-sprinklered and not more than 18 m or sprinklered and protected by a thermal barrier ; § There are no obstacles for using wood-frame in-fill wall systems for interior partition walls in hybrid buildings: a) For non-sprinklered buildings not greater than 3 storeys or a floor area not greater than 600 m2 ; b) For sprinklered buildings. § Non-combustible construction allows combustible elements in partition walls in the following instances: a) Solid lumber partitions located in a fire compartment area are permitted in a non-sprinklered floor area not greater than 600 m2 with restrictions ; b) Solid lumber partitions not less than 38 mm thick and partitions that contain wood framing are permitted with restrictions. § Combustible cladding can be used under the following circumstances: a) When a wall assembly with exposing building face is between 10 to 25% tested by CAN/ULC-S134 and complies with Article 3.1.5.5 ; b) When a wall assembly with exposing building face is between 25 to 50%, is sprinklered throughout, installed on a gypsum board sheathing, and has a FSR not more than 25 (with restrictions) ; c) When a wall assembly with exposing building face is between 50 to 100%, cladding can be combustible for group A, B, C, D, E, F. § When a building is required to be of non-combustible construction, combustible elements are limited to the requirements in Subsection 3.1.5 on non-combustible construction ; § When comparing the NBCC with the International Building Code (IBC), the IBC is more in favour of using FRT wood frame in-fill walls with one more storey.
Online Access
Free
Resource Link
Less detail

Fire Tests on Loaded Cross-Laminated Timber Wall and Floor Elements

https://research.thinkwood.com/en/permalink/catalogue254
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Klippel, Michael
Leyder, Claude
Frangi, Andrea
Fontana, Mario
Publisher
International Association For Fire Safety Science
Year of Publication
2014
Country of Publication
Netherlands
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Fire
Keywords
Charring Rate
Canada
Panels
Fire Resistance
Language
English
Conference
Fire Safety Science International Symposium
Research Status
Complete
Notes
February 9-14, 2014, Christchurch, New Zealand
Summary
Cross-laminated timber (CLT) panels are relatively new engineered wood products that can be used as load bearing walls, floors and roof elements in innovative and high quality modern timber structures. The fire behavior of cross-laminated timber panels requires careful evaluation to allow the expansion of CLT elements usage in buildings. A University of British Columbia study has been conducted at the Trees and Timber Institute CNR-IVALSA in San Michele all’Adige, Italy to experimentally evaluate the fire performance of Canadian CLT panels. In total, ten loaded fire tests were performed using standard fire curves (ULC/ASTM and ISO) to study the influence of different cross-section layups on the fire resistance of floor and wall elements and to investigate the influence of different anchors on the fire behavior of wall elements. This paper presents the main results of the experimental analyses and discusses in particular the charring rate, one of the main parameters in fire design.
Online Access
Free
Resource Link
Less detail

Full-Scale Standard Fire Resistance Test of a Wall Assembly for Use in Lower Storeys Of Mid-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue347
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Lafrance, Pier-Simon
Berzins, Robert
Leroux, Patrice
Su, Joseph
Lougheed, Gary
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Fire Resistance
Mid-Rise
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. As one approach, encapsulation materials could be used to protect the combustible (wood) structural materials for a period of time in order to delay the effects of the fire on the combustible structural elements, including delay of ignition. In delaying ignition, any effects of the combustion of the combustible structural elements on the fire severity can be delayed. In some cases, and depending upon the amount of encapsulating material used (e.g. number of layers), ignition of the elements might be avoided completely. This scenario would primarily depend upon the fire event and the actual fire performance of the encapsulating materials used. The effectiveness of the encapsulation approach in limiting the involvement of wood structural materials in fires was demonstrated in the research project through bench-, intermediate- and full-scale fire experiments.
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber and Gypsum Board Wall Assembly (Load-Bearing) - Standard Methods of Fire Tests of Building Construction and Materials

https://research.thinkwood.com/en/permalink/catalogue711
Year of Publication
2012
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Rizzo, Michael
Organization
American Wood Council
Year of Publication
2012
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Keywords
Type X Gypsum Board
Load Bearing
Fire Resistance
Live Load
Language
English
Research Status
Complete
Summary
The Fire Test Laboratory of NGC Testing Services (NGCTS) conducted testing for American Wood Council (AWC) on a load-bearing, Cross-Laminated Timber (CLT) and gypsum board wall assembly to evaluate its fire resistance properties when exposed to fireaccording to the pertinent test standard. Testing was conducted in accordance with ASTM E-119-11a (Standard Test Methods for Fire Tests of Building Construction and Materials). The test was conducted on October 4, 2012 and was witnessed by representatives of American Wood Council.
Copyright
Courtesy, American Wood Council, Leesburg, VA
Online Access
Free
Resource Link
Less detail

Report of Testing Cross Laminated Timber Panels for Compliance with CAN/ULC-S101 Standard Methods of Fire Endurance Tests of Building Construction and Materials: Loadbearing 3-Ply CLT Wall with Attached Wood Frame Partition

https://research.thinkwood.com/en/permalink/catalogue746
Year of Publication
2012
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Organization
Canadian Wood Council
Year of Publication
2012
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Keywords
Fire Resistance
Load Bearing Walls
Mineral Wool Insulation
Type X Gypsum Board
Panels
Language
English
Research Status
Complete
Summary
Intertek Testing Services NA, Inc. (Intertek) has conducted testing for the Canadian Wood Council, on Cross-Laminated Timber Panels, to evaluate their fire resistance. Testing was conducted in accordance with the applicable requirements, and following the standard methods, of CAN/ULC-S101 Standard Methods of Fire Endurance Tests of Building Construction and Materials, fourth edition, July 2007. This evaluation took place on December 30, 2011.
Online Access
Free
Resource Link
Less detail

Report of Testing Cross Laminated Timber Panels for Compliance with Can/ULC-S101 Standard Methods of Fire Endurance Tests of Building Construction and Materials: Loadbearing 3-Ply CLT Wall with 1 Layer of 5/8'' Type X Gypsum Board

https://research.thinkwood.com/en/permalink/catalogue744
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Organization
Canadian Wood Council
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Keywords
Type X Gypsum Board
Panels
Fire Resistance
Load Bearing Walls
Language
English
Research Status
Complete
Summary
Intertek Testing Services NA, Inc. (Intertek) has conducted testing for the Canadian Wood Council, on Cross-Laminated Timber Panels, to evaluate their fire resistance. Testing was conducted in accordance with the applicable requirements, and following the standard methods, of ASTM E119-14 Standard Test Methods for Fire Tests of Building Construction and Materials, OCtober 2014 Edition, and CAN/ULC-S101-07 Standard Methods of Fire Endurance Tests of Building Construction and Materials. This evaluation took place on November 12, 2014.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.