Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Vibration and Sound Insulation Performance of Mass Timber Floors with Concrete Toppings

https://research.thinkwood.com/en/permalink/catalogue2548
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Ceilings
Organization
University of Northern British Columbia
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Ceilings
Topic
Acoustics and Vibration
Keywords
Concrete Topping
Acoustic Membrane
Exposed Mass Timber Elements
Research Status
In Progress
Notes
Project contact is Jianhui Zhou at the University of Northern British Columbia
Summary
The impact sound perceived in the lower volume in a building is radiated by the vibration of the ceiling transmitted from the vibration of the floor generated by an impact source in the upper volume. Thus, the dynamic behaviour of a floor is one crucial intermediate step to understand the impact sound insulation performance of such a floor. A key to reducing the impact sound is to isolate the structural floor from the subfloor. Floating floor construction is a common way of improving the impact sound insulation, which is to float a concrete topping on the mass timber floor with an elastic layer in between. There are two types of floating floor solutions, a) with a continuous elastic layer and b) with point bearing elastic mounts as shown in Figure 1. This study will investigate both solutions and will provide guidance on how to adopt both solutions for mass timber floors with an exposed ceiling. The objectives of this project are: 1. To measure the sound insulation performance of mass timber floors with full-scale concrete topping on various continuous elastic interlayer materials 2. To measure the sound insulation performance of mass timber floors with full-scale concrete topping on discrete elastic load mounts
Less detail

Vibration Serviceability Performance of Mass Timber Floors with Beam and Column Supports

https://research.thinkwood.com/en/permalink/catalogue2818
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Organization
University of Northern British Columbia
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Frequency
Span Length
Vibration Performance
Mass Timber
Dynamic Behavior
Footfall Excitation
Research Status
In Progress
Notes
Project contact is Jianhui Zhou at the University of Northern British Columbia
Summary
Floor vibration performance could govern the allowable span of mass timber floors. The objectives of this project are: 1. to develop a mobile app to collect data from lab and field mass timber floors for acceleration-based performance criteria; 2. to investigate the dynamic properties of mass timber floors under different boundary conditions; 3. to adopt frequency equations to predict the fundamental frequencies of mass timber floors under different boundary conditions; 4. to develop numerical modeling strategies for predicting vibration response of mass timber floors under footfall excitations.
Less detail

Effect of Design Parameters on Mass Timber Floor Vibration Performance

https://research.thinkwood.com/en/permalink/catalogue2683
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
DLT (Dowel Laminated Timber)
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
DLT (Dowel Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Keywords
Concrete Topping
Plywood
Vibration Performance
Bending Stiffness
Language
English
Research Status
Complete
Summary
Mass timber is a generic name for a broad range of thick and heavy wood products such as cross-laminated timber (CLT), dowel-laminated timber (DLT), nail-laminated timber (NLT), and gluelaminated timber (GLT), among others. So far, vibration-controlled design methods have been developed mostly for CLT floors.
Online Access
Free
Resource Link
Less detail

Acoustical Performance of Mass Timber Building Elements

https://research.thinkwood.com/en/permalink/catalogue2553
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Sound Insulation
Acoustic Membrane
Acoustical Performance
Research Status
In Progress
Notes
Project contact is Jianhui Zhou at the University of Northern British Columbia
Summary
Building acoustics has been identified as one of the key subjects for the success of mass timber in the multi-storey building markets. The project will investigate the acoustical performance of mass timber panels produced in British Columbia. The apparent sound transmission class (ASTC) and impact insulation class (AIIC) of bare mass timber elements as wall and/ or floor elements will be measured through a lab mock-up. It is expected that a database of the sound insulation performance of British Columbia mass timber products will be developed with guidance on optimal acoustical treatments to achieve different levels of performance.
Less detail

Improving Impact Sound Insulation Performance of Mass Timber Floors with Dry Floating Floor Solution

https://research.thinkwood.com/en/permalink/catalogue2817
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Other Materials
Application
Floors
Organization
University of Northern British Columbia
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Other Materials
Application
Floors
Topic
Acoustics and Vibration
Keywords
Dry Floating
Floor Assemblies
Low Frequency
Mass Timber
Research Status
In Progress
Notes
Project contact is Jianhui Zhou
Summary
Sound insulation performance is critical to the broader market acceptance of mass timber buildings in both residential and non-residential building markets. The project aims to develop dry floating floor solutions for mass timber floors with improved sound insulation performance. The specific objectives are: 1. To design floating floor assemblies using wood-based panels such as medium density fiberboard (MDF), gypsum board, and structural concrete panels for mass timber floors with considerations for fire requirements; 2. To evaluate the impact sound insulation performance of developed floor assemblies with a focus in the low-frequency range.
Less detail

Apparent Sound Insulation in Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2616
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Author
Mahn, Jeffrey
Quirt, David
Mueller-Trapet, Markus
Hoeller, Christoph
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Airborne Sound Transmission
Apparent Sound Transmission Class
Sound Transmission
Adhesive
Language
English
Research Status
Complete
Summary
This Report presents the results from experimental studies of the airborne sound transmission of mass timber assemblies, together with an explanation of the calculation procedures to predict the apparent sound transmission class (ASTC) rating between adjacent spaces in a building constructed of mass timber assemblies. The experimental data which is the foundation for this Report includes the laboratory measured sound transmission loss of wall and floor assemblies constructed of Cross Laminated Timber (CLT), Nail-Laminated Timber (NLT) and Dowel-Laminated Timber (DLT), and the laboratory measured vibration reduction index between assemblies of junctions between CLT assemblies. The presentation of the measured data is combined with the presentation of the appropriate calculation procedures to determine the ASTC rating in buildings comprised of such assemblies along with numerous worked examples. Several types of CLT constructions are commercially available in Canada, but this study focused on CLT assemblies with an adhesive applied between the faces of the timber elements in adjacent layers, but no adhesive bonding between the adjacent timber elements within a given layer. These CLT assemblies could be called “Face-Laminated CLT Assemblies” but are simply referred to as CLT assemblies in this Report. Another form of CLT assemblies does have adhesive applied between the faces of the timber elements in adjacent layers as well as adhesive to bond the adjacent timber elements within a given layer. These assemblies are referred to as “Fully-Bonded CLT Assemblies” in this Report. Because fully-bonded CLT assemblies have different properties than face-laminated CLT assemblies, the sound transmission data and predictions in this Report do not apply to fully-bonded CLT assemblies.
Online Access
Free
Resource Link
Less detail

Mass Timber Building Science Primer

https://research.thinkwood.com/en/permalink/catalogue2797
Year of Publication
2021
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Kesik, Ted
Martin, Rosemary
Organization
Mass Timber Institute
RDH Building Science
Publisher
Mass Timber Institute
Year of Publication
2021
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Keywords
Mass Timber
Building Science
Language
English
Research Status
Complete
Summary
The development of this primer commenced shortly after the 2018 launch of the Mass Timber Institute (MTI) centered at the University of Toronto. Funding for this publication was generously provided by the Ontario Ministry of Natural Resources and Forestry. Although numerous jurisdictions have established design guides for tall mass timber buildings, architects and engineers often do not have access to the specialized building science knowledge required to deliver well performing mass timber buildings. MTI worked collaboratively with industry, design professionals, academia, researchers and code experts to develop the scope and content of this mass timber building science primer. Although provincially funded, the broader Canadian context underlying this publication was viewed as the most appropriate means of advancing Ontario’s nascent mass timber building industry. This publication also extends beyond Canada and is based on universally applicable principles of building science and how these principles may be used anywhere in all aspects of mass timber building technology. Specifically, these guidelines were developed to guide stakeholders in selecting and implementing appropriate building science practices and protocols to ensure the acceptable life cycle performance of mass timber buildings. It is essential that each representative stakeholder, developer/owner, architect/engineer, supplier, constructor, wood erector, building official, insurer, and facility manager, understand these principles and how to apply them during the design, procurement, construction and in-service phases before embarking on a mass timber building project. When mass timber building technology has enjoyed the same degree of penetration as steel and concrete, this primer will be long outdated and its constituent concepts will have been baked into the training and education of design professionals and all those who fabricate, construct, maintain and manage mass timber buildings. One of the most important reasons this publication was developed was to identify gaps in building science knowledge related to mass timber buildings and hopefully to address these gaps with appropriate research, development and demonstration programs. The mass timber building industry in Canada is still a collection of seedlings that continue to grow and as such they deserve the stewardship of the best available building science knowledge to sustain them until such time as they become a forest that can fend for itself.
Online Access
Free
Resource Link
Less detail

Effet des Paramètres de Conception Sur la Performance Vibratoire des Planchers Massifs en Bois

https://research.thinkwood.com/en/permalink/catalogue2684
Year of Publication
2020
Topic
Acoustics and Vibration
Energy Performance
Material
DLT (Dowel Laminated Timber)
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
DLT (Dowel Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Energy Performance
Keywords
Concrete Topping
Plywood
Vibration Performance
Bending Stiffness
Language
French
Research Status
Complete
Summary
La construction massive en bois est un terme générique qui englobe une grande variété de produits du bois épais et lourds, notamment le bois lamellé-croisé (CLT), le bois lamellé-goujonné (DLT), le bois lamellé-cloué et le bois lamellé-collé (GLT). À ce jour, les méthodes de conception à vibrations contrôlées ont surtout été élaborées pour les planchers en CLT.
Online Access
Free
Resource Link
Less detail

Mass Timber Design Manual

https://research.thinkwood.com/en/permalink/catalogue2780
Year of Publication
2021
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Organization
WoodWorks
Think Wood
Year of Publication
2021
Country of Publication
United States
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Keywords
Mass Timber
United States
Building Systems
Tall Wood
Sustainability
IBC
Applications
Language
English
Research Status
Complete
Summary
This manual is helpful for experts and novices alike. Whether you’re new to mass timber or an early adopter you’ll benefit from its comprehensive summary of the most up to date resources on topics from mass timber products and applications to tall wood construction and sustainability. The manual’s content includes WoodWorks technical papers, Think Wood continuing education articles, case studies, expert Q&As, technical guides and other helpful tools. Click through to view each individual resource or download the master resource folder for all files in one handy location. For your convenience, this book will be updated annually as mass timber product development and the market are quickly evolving.
Online Access
Free
Resource Link
Less detail

Design Options for Three- and Four-Storey Wood School Buildings in British Columbia

https://research.thinkwood.com/en/permalink/catalogue2373
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Author
Bevilacqua, Nick
Dickof, Carla
Wolfe, Ray
Gan, Wei-Jie
Embury-Williams, Lynn
Organization
Fast + Epp
Wood Works! BC
Thinkspace
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Construction
Education
School Buildings
Mass Timber
Multi-Storey
Building Code
Fire Protection
Language
English
Research Status
Complete
Summary
This study illustrates the range of possible wood construction approaches for school buildings that are up to four storeys in height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This study is closely related to the report Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction prepared by GHL Consultants, which explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys, while also imposing limits on the overall floor area. As such, the reader is referred to the GHL report for further information regarding building code compliance (with a particular emphasis on fire protection) for wood school buildings.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.