Skip header and navigation

10 records – page 1 of 1.

Directives and Explanatory Guide for Mass Timber Buildings of up to 12 Storeys

https://research.thinkwood.com/en/permalink/catalogue1969
Year of Publication
2015
Topic
Design and Systems
Fire
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Veilleux, Lise
Gagnon, Sylvain
Dagenais, Christian
Publisher
Régie du bâtiment du Québec
Year of Publication
2015
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Seismic
Keywords
Tall Wood
Multi-Storey
Construction
Fire Resistance Rating
Language
English
Research Status
Complete
ISBN
978-2-550-74728-4 (printed); 978-2-550-74731-4 (PDF)
Summary
This document is a translation of the “Bâtiments de construction massive en bois d’au plus 12 étages” Guide published in August 2015. In the event of discrepancies, the French version prevails.
Online Access
Free
Resource Link
Less detail

Full-Scale Fire Test of a Mass Timber Vertical Shaft in Support to Tall Wood Buildings Canadian Initiative

https://research.thinkwood.com/en/permalink/catalogue1673
Year of Publication
2016
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shafts and Chases
Author
Ranger, Lindsay
Su, Joseph
Dagenais, Christian
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shafts and Chases
Topic
Fire
Keywords
Full Scale
Fire Test
Canada
Tall Wood
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3881-3887
Summary
A full-scale demonstration fire was conducted at National Research Council Canada (NRCC) to show that a 2-hr non-standard severe design fire in an apartment would have little or no effect on an adjacent elevator or stair shaft. The test was performed to support the approval of an alternative solution for a deemed-to-satisfy 2-hr noncombustible construction assembly, intended for the construction of a tall wood building in Quebec City (Canada). Throughout the duration of the fire no impact was observed in the CLT shaft: there was no evidence of temperature rise and no apparent smoke leakage. This suggests there was little to no effect of the design fire on the structure of the CLT shaft itself.
Online Access
Free
Resource Link
Less detail

Fire Safety in Tall Timber Building: A BIM-Based Automated Code-Checking Approach

https://research.thinkwood.com/en/permalink/catalogue2664
Year of Publication
2020
Topic
Fire
Design and Systems
Application
Wood Building Systems
Author
Kincelova, Kristina
Boton, Conrad
Blanchet, Pierre
Dagenais, Christian
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Application
Wood Building Systems
Topic
Fire
Design and Systems
Keywords
BIM
Fire Safety
Building Code
Visual Programming
Compliance Checking
Language
English
Research Status
Complete
Series
Buildings
Summary
Fire safety regulations impose very strict requirements on building design, especially for buildings built with combustible materials. It is believed that it is possible to improve the management of these regulations with a better integration of fire protection aspects in the building information modeling (BIM) approach. A new BIM-based domain is emerging, the automated code checking, with its growing number of dedicated approaches. However, only very few of these works have been dedicated to managing the compliance to fire safety regulations in timber buildings. In this paper, the applicability to fire safety in the Canadian context is studied by constituting and executing a complete method from the regulations text through code-checking construction to result analysis. A design science approach is used to propose a code-checking method with a detailed analysis of the National Building Code of Canada (NBCC) in order to obtain the required information. The method starts by retrieving information from the regulation text, leading to a compliance check of an architectural building model. Then, the method is tested on a set of fire safety regulations and validated on a building model from a real project. The selected fire safety rules set a solid basis for further development of checking rules for the field of fire safety. This study shows that the main challenges for rule checking are the modeling standards and the elements’ required levels of detail. The implementation of the method was successful for geometrical as well as non-geometrical requirements, although further work is needed for more advanced geometrical studies, such as sprinkler or fire dampers positioning.
Online Access
Free
Resource Link
Less detail

Fire Performance of Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2824
Year of Publication
2021
Topic
Fire
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Dagenais, Christian
Ranger, Lindsay
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
Fire Resistance
CSA 086
National Design Specifications for Wood Construction (NDSR)
Fire Test
Fire Stopping
Connections
Insurance
Mass Timber
Language
English
Research Status
Complete
Series
InfoNote
Summary
This InfoNote summarizes recent research and work in progress. A significant amount of fire research has been conducted on mass timber over the last 10 years in Canada. This has supported the successful design and construction of numerous low-, mid-and even high-rise wood buildings. This has also fostered the introduction of new provisions into the National Building Code of Canada which has made wood and mass timber construction more accessible. However, the fire performance of these systems remains a concern for many potential occupants or owners of these buildings, not to mention building officials and fire departments. Research at FPInnovations continues to support designers and builders in the use of mass timber assemblies by ensuring fire safe designs.
Online Access
Free
Resource Link
Less detail

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: Fire Resistance of Mass Timber Laminated Elements

https://research.thinkwood.com/en/permalink/catalogue2088
Year of Publication
2019
Topic
Fire
Application
Walls
Floors
Wood Building Systems
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Application
Walls
Floors
Wood Building Systems
Topic
Fire
Keywords
Fire Resistance
Mid-Rise
High-Rise
Charring
Language
English
Research Status
Complete
Summary
This project assesses the fire resistance of laminated timber structural systems as wall and floor assemblies. Full-scale tests were conducted to assess structural fire resistance and charring behaviour. This research could be used to expand current fire design provisions and support inclusion of these types of assemblies into Annex B of CSA O86.
Online Access
Free
Resource Link
Less detail

Encapsulation of Mass Timber Floor Surfaces

https://research.thinkwood.com/en/permalink/catalogue2528
Year of Publication
2020
Topic
Design and Systems
Fire
Material
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Floors

Flame Spread in Concealed Mass Timber Spaces

https://research.thinkwood.com/en/permalink/catalogue2529
Year of Publication
2020
Topic
Fire
Application
Walls
Floors
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Application
Walls
Floors
Topic
Fire
Keywords
Floor Voids
Fire Tests
Mid-Rise
Concealed Spaces
Fire Performance
Mass Timber
Language
English
Research Status
Complete
Summary
The overall objective of this work is to expand options for designers of mass timber buildings by reducing the dependence on concrete and gypsum board though the demonstration of adequate fire performance of mass timber assemblies. This work is intended to demonstrate that mass timber surfaces can be left exposed in concealed spaces, under certain conditions, while still performing well to control flame spread; this could result in significant savings in construction. Flame spread testing will be completed to compare the performance of mass timber assemblies and concealed space designs that are currently allowed by the NFPA 13 to be exempt from the installation ofsprinklers. Data is needed to support the use of exposed mass timber in concealed spaces by demonstrating limited flame spread in concealed mass timber void spaces. Flame spread testing has already shown that mass timber has lower flame spread ratings than typically found with thinner wood panels. This will lead the way in allowing unsprinklered 305 mm (12 in.) deep concealed spaces beneath mass timber assemblies or exposed mass timber in other concealed spaces such as hollow wood floor beams. The goal is to generate data to support the use of exposed mass timber in concealed spaces. This data could be used in an Alternative Solution to gain approval for this type of design. Ultimately, this could lead to changing the NBCC to allow exposed mass timber in concealed spaces.
Online Access
Free
Resource Link
Less detail

Assessing The Flammability of Mass Timber Components: A Review

https://research.thinkwood.com/en/permalink/catalogue87
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Mehaffey, Jim
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
National Building Code of Canada
Flame Spread
Model
Cone Calorimeter Testing
Buildings
Language
English
Research Status
Complete
Summary
This report begins with a discussion of the mechanisms of flame spread over combustible materials while describing the NBCC prescriptive solutions that establish the acceptable fire performance of interior finish materials. It is noted that while flame spread ratings do give an indication of the fire performance of products in building fires, the data generated are not useful as input to fire models that predict fire growth in buildings. The cone calorimeter test is then described in some detail. Basic data generated in the cone calorimeter on the time to ignition and heat release rates are shown to be fundamental properties of wood products which can be useful as input to fire models for predicting fire growth in buildings. The report concludes with the recommendation that it would be useful to run an extensive set of cone calorimeter tests on SCL, glue-laminated timber and CLT products. The fundamental data could be most useful for validating models for predicting flame spread ratings of massive timber products and useful as input to comprehensive computer fire models that predict the course of fire in buildings. It is also argued that the cone calorimeter would be a useful tool in assessing fire performance during product development and for quality control purposes.
Online Access
Free
Resource Link
Less detail

Full-Scale Mass Timber Shaft Demonstration Fire

https://research.thinkwood.com/en/permalink/catalogue3
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Author
Dagenais, Christian
Su, Joseph
Ranger, Lindsay
Muradori, Sasa
Organization
FPInnovations
National Research Council of Canada
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Topic
Fire
Keywords
Type X Gypsum Board
Origine
Fire Demonstration
Language
English
Research Status
Complete
Summary
A full-scale demonstration dire was conducted at National Research Council Canada to show how a mass timber vertical shaft could withstand a severe fire exposure lasting at least two hours. The fire resistance tests and the demonstration fire were performed to support the approval and construction of a tall wood building in Quebec city; the building is planned to be 13 storeys which includes a 12-storey wood structure above a 1-storey concrete podium. An updated calculation methologody to determine the fire resistance of CLT is provided in Capter 8 (Fire) of the CLT Handbook.
Online Access
Free
Resource Link
Less detail

Fire Performance of Mass-Timber Encapsulation Methods and the Effect of Encapsulation on Char Rate of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue758
Year of Publication
2016
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Hasburgh, Laura
Bourne, Keith
Dagenais, Christian
Ranger, Lindsay
Roy-Poirier, Audrey
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Charring Rate
Encapsulation
Fire Resistance
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria
Summary
Twenty-three (23) cross-laminated timber (CLT) panels were exposed to a standard fire at an intermediate scale. This paper discusses several encapsulation methods used to increase the fire resistance of those panels, with emphasis on encapsulation times and the impact of encapsulation on the charring rate of CLTs. The encapsulation methods used included Type X gypsum board, intumescent coating, rock fibre insulation and spray applied fire-resistant materials (SFRM). The results suggest that encapsulation methods can significantly reduce wood charring rates in addition to delaying the time at which wood elements become involved in fire.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.