Skip header and navigation

10 records – page 1 of 1.

Ambient and Forced Vibration Testing and Finite Element Model Updating of a Full-Scale Posttensioned Laminated Veneer Lumber Building

https://research.thinkwood.com/en/permalink/catalogue1103
Year of Publication
2012
Topic
Seismic
Wind
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Author
Worth, Margaret
Omenzetter, Piotr
Morris, Hugh
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Wind
Acoustics and Vibration
Keywords
Post-Tensioned
Full Scale
In Situ
Finite Element Model
Dynamic Performance
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 13-15, 2012, Christchurch, New Zealand
Summary
The Nelson Marlborough Institute of Technology Arts and Media building was completed in 2011 and consists of three seismically separate complexes. This research focussed on the Arts building as it showcases the use of coupled post-tensioned timber shear walls. These are part of the innovative Expan system. Full-scale, in-situ dynamic testing of the novel building was combined with finite element modelling and updating to obtain an understanding of the structural dynamic performance within the linear range. Ambient testing was performed at three stages during construction and was combined with forced vibration testing for the final stage. This forms part of a larger instrumentation program developed to investigate the wind and seismic response and long term deformations of the building. A finite element model of the building was formulated and updated using experimental modal characteristics. It was shown that the addition of non-structural elements, such as cladding and the staircase, increased the natural frequency of the first mode and the second mode by 19% and 24%, respectively. The addition of the concrete floor topping as a structural diaphragm significantly increased the natural frequency of the first mode but not the second mode, with an increase of 123% and 18%, respectively. The elastic damping of the NMIT building at low-level vibrations was identified as being between 1.6% and 2.4%
Online Access
Free
Resource Link
Less detail

Finite Element Modeling for Vibration Transmission in a Cross Laminated Timber Structure

https://research.thinkwood.com/en/permalink/catalogue1633
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Vardaxis, Nikolaos-Georgios
Hagberg, Klas
Bard, Delphine
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Sweden
Numerical Model
Finite Element Model
Impact Noise Transmission
Impact Sound
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2953-2962
Summary
This paper deals with a certain type of C.L.T. (Cross Laminated Timber) construction, in a residential building in Fristad, Sweden. The objective is to study impact noise transmission, at the lower frequency range (10-200 Hz), where wooden dwellings perform inefficiently, in terms of acoustic quality. The vibrational behavior of lightweight structures and specifically a multilayered floor separating two vertically adjacent bedrooms are investigated. A numerical model of the multilayered test plate, which includes sound insulation and vibration isolation layers, is developed using the Finite Element Method (F.E.M.) in commercial software. The design process, the analysis and improvement of the calculated outcome concerning accuracy and complexity are of interest. In situ vibration measurements were also performed so as to evaluate the structures dynamic behavior in reality and consequently the validity of the modelled results. The whole process from design to evaluation is discussed thoroughly, where uncertainties of the complex F.E.M. model and the approximations of the real structure are analyzed. Numerical comparisons are presented including mechanical mobility and impact noise transmission results. The overall aim is to set up a template of calculations that can be used as a prediction tool in the future by the industry and researchers.
Online Access
Free
Resource Link
Less detail

Vibration Serviceability Design Analysis of Cross-Laminated Timber Floor Systems

https://research.thinkwood.com/en/permalink/catalogue40
Year of Publication
2014
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Ussher, Ebenezer
Sadeghi, Masoud
Weckendorf, Jan
Smith, Ian
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Serviceability
Keywords
Finite Element Model
Floors
Vibrations
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Vibration serviceability of various types of timber floor systems has claimed much attention during past decades. Yet the definition of robustly reliable engineering design approaches has remained elusive, except in well-defined situations. Successful de...
Online Access
Free
Resource Link
Less detail

Effect of End Support Conditions on the Vibrational Performance of Cross-Laminated Timber Floors

https://research.thinkwood.com/en/permalink/catalogue209
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Maldonado, Saul
Chui, Ying Hei
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
End Support
Natural Frequency
Damping
Static Deflection
Finite Element Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This study focuses on the vibrational behaviour of 3, 5 and 7-layer cross-laminated timber (CLT) plates supported on two sides with different support conditions. Three end support setups are proposed; 1) top load over the two supported edges, 2) direct fastening to support using self-tapping screws, 3) steel angle bracket support. The measured response parameters are natural frequencies, damping, and static deflection under a point load. The rotational stiffness with load, screws and steel angle brackets will be characterized through static tests. In addition, the effect of the span is studied by varying the test span and repeating the vibration and deflection tests. The laboratory tests will be supplemented with analytical modelling. The expected outcome is the development of approaches to more accurately calculate the natural frequency and static deflection under a point load, which can account for the influence of common support conditions encountered in service.
Online Access
Free
Resource Link
Less detail

Modelling Prerequisites – FEM/SEA Impact and Airborne Sound

https://research.thinkwood.com/en/permalink/catalogue840
Year of Publication
2017
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Author
Bard, Delphine
Negreira, Juan
Guigou-Carter, Catherine
Borello, Gerard
Kouyoumji, Jean-Luc
Speranza, Alice
Coguenanff, Corentin
Hagberg, Klas
Organization
Silent Timber Build
Year of Publication
2017
Country of Publication
Sweden
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Europe
Finite Element Model
Frequencies
SEA Model
Prediction
Impact Sound Insulation
Airborne Sound Insulation
Language
English
Research Status
Complete
Summary
This report comprises reslts from the work done within work package 1 in the WWN+ project "Silent Timber Build", WP 1: Prediction tools, low and high frequencies. The aim from this WP was to develop prediction tools applied for wooden constructions. Included in this is also to create necessary basis for enough accuracy for any European wood construction. It implies development of new methods but also to understand how input forces primarily from the tapping machine affects the resuts of impact sound levels. The WP also describes how models are developed, in order to provide expected accuracy and then how to further improve the models in order to optimize floor and wall assemblies. The Work Package has been closely linked to WP 2 but also WP3. Using the reults from WP 2, the prediction model results can be compared to expected values for any European construction. From that optimization of floor assemblies and refining of the model is possible.
Online Access
Free
Resource Link
Less detail

Model Calibration of Wooden Structure Assemblies - Using EMA and FEA

https://research.thinkwood.com/en/permalink/catalogue638
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Bolmsvik, Åsa
Linderholt, Andreas
Olsson, Jörgen
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Experimental Modal Analysis
Finite Element Model
Sound Transmission
Vibrational Tests
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
To predict and, when needed to fulfil regularizations or other requirements, lower the impact sound transmission in light weight buildings prior to building, dynamically representative calculation models are needed. The material properties of commonly used building components have a documented spread in literature. Therefore, to validate the junction models, the dynamics of the actual assembly components have to be known. Here, the dynamic properties of a number of component candidates are measured using hammer excited vibrational tests. The spread of the properties of the components are hereby gained. Some of the components are selected to build up wooden assemblies which are evaluated first when they are screwed together and later when they are screwed and glued together. The focus is here on achieving representative finite element models of the junctions between the building parts composing the assemblies.
Online Access
Free
Resource Link
Less detail

Model Calibration of Wooden Strucuture Assemblies - Using EMA and FEA

https://research.thinkwood.com/en/permalink/catalogue1001
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Bolmsvik, Åsa
Linderholt, Andreas
Olsson, Jörgen
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Finite Element Model
Experimental Modal Analysis
Impact Sound Transmission
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
To predict and, when needed to fulfil regularizations or other requirements, lower the impact sound transmission in light weight buildings prior to building, dynamically representative calculation models are needed. The material properties of commonly used building components have a documented spread in literature. Therefore, to validate the junction models, the dynamics of the actual assembly components have to be known. Here, the dynamic properties of a number of component candidates are measured using hammer excited vibrational tests. The spread of the properties of the components are hereby gained. Some of the components are selected to build up wooden assemblies which are evaluated first when they are screwed together and later when they are screwed and glued together. The focus is here on achieving representative finite element models of the junctions between the building parts composing the assemblies.
Online Access
Free
Resource Link
Less detail

Dynamic Characteristics of Glulam Beam and Deck-Element Floors

https://research.thinkwood.com/en/permalink/catalogue1717
Year of Publication
2016
Topic
Acoustics and Vibration
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Mehdi Ebadi, Mohammad
Doudak, Ghasan
Smith, Ian
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Serviceability
Keywords
Vibration Response
One-Way
Finite Element Model
Experimental
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4547-4554
Summary
Low amplitude cyclic vertical motions of flat floors that humans find unacceptable are commonly caused by impacts resulting from their own activities or those of other people. It is therefore a goal of engineering design to identify and avoid construction methods prone to creation of motions that make floors unserviceable for an intended...
Online Access
Free
Resource Link
Less detail

Dynamic Behaviour of LVL-Concrete Composite Flooring Systems

https://research.thinkwood.com/en/permalink/catalogue315
Year of Publication
2015
Topic
Acoustics and Vibration
Serviceability
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Abd. Ghafar, Nor
Organization
University of Canterbury
Year of Publication
2015
Country of Publication
New Zealand
Format
Thesis
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Serviceability
Keywords
Finite Element Model
Dynamic Behaviour
Natural Frequency
Mode shape
Electrodynamic Shaker
Boundary Conditions
Language
English
Research Status
Complete
Summary
This research focuses on the dynamic behaviour of long span LCC flooring systems. Experimental testing and finite element modelling was used to determine the dynamic behaviour, with particular regard to the natural frequency, fn and mode shape of an LCC floor. Both the experimental results and the finite element analyses agreed and showed that increased stiffness increased the natural frequency of the floor, and the boundary conditions influenced the dynamic behaviour of the LCC floor. Providing more restraint increased the stiffness of the floor system. The connectors' stiffness did not influence the dynamic performance of the floor. The research showed that a 8 m LCC long span floor can be constructed using LVL joists of between 300 mm to 400 mm depth with a concrete thickness of 65 mm for the longer spans, and joists of between 150 mm to 240 mm depth in conjunction with a concrete topping thickness of 100 mm for the shorter spans.
Online Access
Free
Resource Link
Less detail

Timber-Concrete Composite Connectors in Flat-Plate Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue1275
Year of Publication
2016
Topic
Acoustics and Vibration
Mechanical Properties
Connections
Material
Timber-Concrete Composite
Application
Floors
Author
Gerber, Adam
Organization
University of British Columbia
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Mechanical Properties
Connections
Keywords
Strength
Stiffness
Shear Tests
Bending Tests
Vibration Tests
Dynamic Properties
Finite Element Model
Language
English
Research Status
Complete
Summary
Timber-Concrete Composite (TCC) systems are comprised of a timber element connected to a concrete slab through a mechanical shear connection. When TCC are used as flexural elements, the concrete and timber are located in compression and tension zones, respectively. A large number of precedents for T-beam configurations exist; however, the growing availability of flat plate engineered wood products (EWPs) in North America in combination with a concrete topping has offered designers and engineers greater versatility in terms of architectural expression and structural and building physics performance. The focus of this investigation was to experimentally determine the properties for a range of proprietary, open source, and novel TCC systems in several Canadian EWPs. Strength and stiffness properties were determined for 45 different TCC configurations based on over 300 small-scale shear tests. Nine connector configurations were selected for implementation in full-scale bending and vibration tests. Eighteen floor panels were tested for elastic stiffness under a quasi-static loading protocol and measurements of the dynamic properties were obtained prior to loading to failure. The tests confirmed that both hand calculations according to the -method and more detailed FEM models can predict the basic stiffness and dynamic properties of TCC floors within a reasonable degree of accuracy; floor capacities were more difficult to predict, however, failure did usually not occur until loading reached 10 times serviceability requirements. The research demonstrated that all selected connector configurations produced efficient timber-concrete-composite systems.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.