Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Glulam Timber Bridges for Local Roads

https://research.thinkwood.com/en/permalink/catalogue2131
Year of Publication
2017
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Carnahan, Zachary
Publisher
South Dakota State University
Year of Publication
2017
Country of Publication
United States
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Design and Systems
Keywords
Bridge Decks
Performance Based Design
Model
Full-Scale Glulam Girder Bridge Test
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Field Performance of Timber Bridges: A National Study

https://research.thinkwood.com/en/permalink/catalogue2127
Year of Publication
2013
Topic
Design and Systems
Serviceability
Material
Timber (unspecified)
Application
Bridges and Spans
Author
Brashaw, Brian
Wacker, James
Jalinoos, Frank
Year of Publication
2013
Country of Publication
United States
Format
Conference Paper
Material
Timber (unspecified)
Application
Bridges and Spans
Topic
Design and Systems
Serviceability
Keywords
Timber Construction
Inspection
Non-Destructive Evaluation
Service Life
Language
English
Conference
International Conference on Timber Bridges
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Durable Timber Bridges - Final Report and Guidelines

https://research.thinkwood.com/en/permalink/catalogue2133
Year of Publication
2017
Topic
Design and Systems
Moisture
Serviceability
Material
Timber (unspecified)
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans

Timber-Concrete Composite Bridges: State-of-the-Art Review

https://research.thinkwood.com/en/permalink/catalogue2125
Year of Publication
2013
Topic
Design and Systems
General Information
Material
Timber-Concrete Composite
Application
Bridges and Spans

Modular Timber Concrete Composite System for Short Span Highway Bridges

https://research.thinkwood.com/en/permalink/catalogue2297
Year of Publication
2019
Topic
Design and Systems
Connections
Material
Timber-Concrete Composite
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Liang, Yi
Publisher
University of Toronto
Year of Publication
2019
Country of Publication
Canada
Format
Thesis
Material
Timber-Concrete Composite
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Design and Systems
Connections
Keywords
Modular Construction
Ultra-High Performance Fibre Reinforced Concrete (UHPFRC)
Self-Tapping Screws
Canadian Highway Bridge Design Code
Language
English
Research Status
Complete
Summary
An innovative concept for a modular timber concrete composite system for short span highway bridges has been designed and key components experimentally validated. The proposed system consists of a Ultra-High Performance Fibre Reinforced Concrete(UHPFRC) deck and glue-laminated timer (glulam) girders linked to act compositely together by reinforcing steel bar shear connectors. This composite system has light, stable modules that can be rapidly constructed on site with less special equipment. Simple design checks indicate that the concept satisfies all serviceability limit state(SLS) and ultimate limit state(ULS) requirements of the Canadian Highway Bridge Design Code. Pull-out tests characterized the embedment lengths of 20M steel bar connectors to be 10 bar-diameters in UHPFRC. Push-off tests determined the embedment lengths of the same bars to be 30 bar-diameters glued into the timber girders. The slip modulus of the connectors is determined to be 67 kN/mm. The stiffness of the crosswise self-tapping screw connectors were tested and found to be structurally insignificant in this application. The excellent tensile and cracking properties of the reinforced UHPFRC deck was experimentally verified. A small amount of reinforcement would further improve the ductility of the UPHFRC deck system.
Online Access
Free
Resource Link
Less detail

Long Term Monitoring of Timber Bridges - Assessment and Results

https://research.thinkwood.com/en/permalink/catalogue2124
Year of Publication
2013
Topic
Moisture
Serviceability
Material
Timber (unspecified)
Application
Bridges and Spans
Author
Franke, Bettina
Franke, Steffen
Müller, Andreas
Vogel, Mareike
Scharmacher, Florian
Tannert, Thomas
Publisher
Trans Tech Publications
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Material
Timber (unspecified)
Application
Bridges and Spans
Topic
Moisture
Serviceability
Keywords
Monitoring
Bridge
Moisture Content
Climate
Language
English
Research Status
Complete
Series
Advanced Materials Research
Online Access
Free
Resource Link
Less detail

Development of a Smart Timber Bridge (Phase III): Moisture and Strain Sensor Investigation for Historic Covered Bridges

https://research.thinkwood.com/en/permalink/catalogue2182
Year of Publication
2019
Topic
Moisture
Material
Glulam (Glue-Laminated Timber)
Other Materials
Application
Bridges and Spans
Author
Phares, Brent
Pence, Trevor
Wacker, James
Hosteng, Travis
Year of Publication
2019
Country of Publication
United States
Format
Report
Material
Glulam (Glue-Laminated Timber)
Other Materials
Application
Bridges and Spans
Topic
Moisture
Keywords
Moisture Content
Sensor
Strain
Reliability
Accuracy
Language
English
Research Status
Complete
Series
General Technical Report
Summary
Nationwide, bridges are deteriorating at a rate faster than they can be rehabilitated and maintained. This has resulted in a search for new methods to rehabilitate, repair, manage, and construct bridges. As a result, structural health monitoring and smart structure concepts have emerged to help improve bridge management. In the case of timber bridges, however, a limited amount of research as been conducted on long-term structural health monitoring solutions, and this is especially true in regards to historic covered timber bridges. To date, evaluation efforts of timber bridges have focused primarily on visual inspection data to determine the structural integrity of timber structures. To fill this research need and help improve timber bridge inspection and management strategies, a 5-year research plan to develop a smart timber bridge structure was undertaken. The overall goal of the 5-year plan was to develop a turnkey system to analyze, monitor, and report on the performance and condition of timber bridges. This report outlines one phase of the 5-year research plan and focuses on developing and attaching moisture sensors onto timber bridge components. The goal was to investigate the potential for sensor technologies to reliably monitor the in situ moisture content of the timber members in historic covered bridges, especially those recently rehabilitated with glulam materials. The timber-specific moisture sensors detailed in this report and the data collected from them will assist in advancing the smart timber bridge.
Online Access
Free
Resource Link
Less detail

Evaluation of Retrofit Procedures for Nail-Laminated and Stringer Bridges

https://research.thinkwood.com/en/permalink/catalogue1434
Year of Publication
2002
Topic
Mechanical Properties
Material
NLT (Nail-Laminated Timber)
Application
Bridges and Spans

Efficient Shear Transfer in Timber-Concrete Composite Bridges by Means of Grouting with Polymer Mortar

https://research.thinkwood.com/en/permalink/catalogue1694
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Bridges and Spans
Author
Kaestner, Martin
Rautenstrauch, Karl
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Bridges and Spans
Topic
Connections
Mechanical Properties
Keywords
Polymer Mortar
Shear Tests
Bending Tests
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4281-4290
Summary
The performance of timber-concrete composite bridge constructions crucially depends on the design of the joint between concrete deck and timber main girders. In research studies at the Bauhaus-University Weimar, innovative joining techniques based on grouting with highly-filled, tolerance-compensating polymer glue mortars have...
Online Access
Free
Resource Link
Less detail

Numerical Modelling of the Hygro-Thermal Response of Timber Bridges During their Service Life: A Monitoring Case-Study

https://research.thinkwood.com/en/permalink/catalogue2167
Year of Publication
2013
Topic
Serviceability
Moisture
Material
Timber (unspecified)
Application
Bridges and Spans

10 records – page 1 of 1.