Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Seismic Design of Timber Buildings with a Direct Displacement-Based Design Method

https://research.thinkwood.com/en/permalink/catalogue1904
Year of Publication
2013
Topic
Seismic
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Frames
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Editor
Cruz, Paulo J.S.
Publisher
CRC Press
Year of Publication
2013
Country of Publication
United States
Format
Book/Guide
Material
Light Frame (Lumber+Panels)
Application
Frames
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
Performance-Based Seismic Design
Direct Displacement-Based Design
Displacement
Damping
Language
English
Research Status
Complete
Series
Structures and Architecture: Concepts, Applications and Challenges
ISBN
978-1-4822-2461-0
Summary
Modern seismic design procedures are widely represented by the concept of Performance-Based Seismic Design (PBSD). Direct Displacement-Based Design (DDBD) procedure for PBSD of buildings is considered a very promising method which uses displacement as an input design parameter. The DDBD procedure first codified by Priestley requires an a priori estimate of the design displacement and the associated equivalent viscous damping of the structure, at design performance levels. In this paper, design parameters for the ultimate limit state have been developed for a common construction system for timber buildings. Such parameters are defined as a function of mechanical and geometrical connection configurations.
Online Access
Free
Resource Link
Less detail

Displacement-Based Seismic Design of Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1891
Year of Publication
2011
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Other Materials
Application
Wood Building Systems
Walls
Floors
Beams
Columns
Frames

Direct Displacement-Based Seismic Design of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1899
Year of Publication
2012
Topic
Seismic
Connections
Application
Frames
Walls
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Publisher
Sociedade Portuguesa de Engenharia Sismica (SPES)
Year of Publication
2012
Country of Publication
Portugal
Format
Conference Paper
Application
Frames
Walls
Wood Building Systems
Topic
Seismic
Connections
Keywords
Direct Displacement-Based Design
Equivalent Viscous Damping
Dowel Type Fastener
Language
English
Conference
15WCEE
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
ISBN
978-1-63439-651-6
Online Access
Free
Resource Link
Less detail

Direct Displacement Based Design of A Novel Hybrid Structure: Steel Moment-Resisting Frames with Cross Laminated Timber Infill Walls

https://research.thinkwood.com/en/permalink/catalogue15
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Bezabeh, Matiyas
Tesfamariam, Solomon
Stiemer, Siegfried
Popovski, Marjan
Karacabeyli, Erol
Publisher
Earthquake Engineering Research Institute
Year of Publication
2015
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Timber-Steel Hybrid
Panels
Nonlinear Time History Analysis
Language
English
Research Status
Complete
Series
Earthquake Spectra
Summary
This study proposes an iterative direct displacement based design method for a novel steel-timber hybrid structure. The hybrid structure incorporates Cross Laminated Timber (CLT) shear panels as an infill in steel moment resisting frames. The proposed design method is applied to design 3-, 6-, and 9-story hybrid buildings with three bays and CLT infilled middle bay. Nonlinear time history analysis, using twenty earthquake ground motion records, is carried out to validate the performance of the design method. The results indicate that the proposed method effectively controls the displacements due to seismic excitation of the hybrid structure.
Online Access
Free
Resource Link
Less detail

Seismic Behaviour of Cross-Laminated Timber Structures: A State-of-the-Art Review

https://research.thinkwood.com/en/permalink/catalogue1284
Year of Publication
2018
Topic
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Author
Izzi, Matteo
Casagrande, Daniele
Bezzi, Stefano
Pasca, Dag
Follesa, Maurizio
Tomasi, Roberto
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Seismic
Keywords
Seismic Behaviour
Finite Element Model
Q Factor
Capacity-Based Design
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
Cross-Laminated Timber (CLT) structures exhibit satisfactory performance under seismic conditions. This ispossible because of the high strength-to-weight ratio and in-plane stiffness of the CLT panels, and the capacity ofconnections to resist the loads with ductile deformations and limited impairment of strength. This study sum-marises a part of the activities conducted by the Working Group 2 of COST Action FP1402, by presenting an in-depth review of the research works that have analysed the seismic behaviour of CLT structural systems. Thefirstpart of the paper discusses the outcomes of the testing programmes carried out in the lastfifteen years anddescribes the modelling strategies recommended in the literature. The second part of the paper introduces theq-behaviour factor of CLT structures and provides capacity-based principles for their seismic design.
Online Access
Free
Resource Link
Less detail

Lateral Behaviour and Direct Displacement Based Design of a Novel Hybrid Structure: Cross Laminated Timber Infilled Steel Moment Resisting Frames

https://research.thinkwood.com/en/permalink/catalogue175
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Frames
Author
Bezabeh, Matiyas
Organization
University of British Columbia
Year of Publication
2014
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Frames
Topic
Design and Systems
Seismic
Keywords
Displacement
Frames
Lateral Loads
Model
Timber-Steel Hybrid
Language
English
Research Status
Complete
Summary
Recently, an innovative hybrid structure has been developed as an alternative lateral-load resisting system at The University of British Columbia. The hybrid structure incorporates Cross Laminated Timber (CLT) shear panels as an infill in steel moment resisting frames (SMRFs). In order to increase the applicability of the proposed system, in this thesis, a direct displacement based design methodology has been developed and analytically validated. Initially, a nonlinear time history analysis (NLTHA) was carried out to study the lateral behaviour of the proposed hybrid structure. For this purpose, a total of 162 different hybrid buildings were modeled and analyzed in OpenSees by using twenty earthquake ground motions (2% probability exceedance in 50 years). Post-earthquake performance indicators (Maximum Interstory Drift (MISD) and Residual Interstory Drift (RISD)) were obtained from the analyses. To assist the post-seismic safety assessment of the hybrid buildings, surrogate models for MISD and RISD were developed using Response Surface Methodology and Artificial Neural Network (ANN). By using the ANN surrogate models as fitness functions for the Genetic Algorithm, optimal modeling parameters of the hybrid system were obtained. Secondly, to represent the energy dissipative capacity of the hybrid system, an equivalent viscous damping (EVD) equation was developed. To formulate the EVD equation, 243 single-storey single-bay CLT infilled SMRF models were developed and subjected to monotonic static and semi-static cyclic analysis. The EVD of each model was calculated from the hysteretic responses based on Jacobsen’s area based approach and later calibrated using NLTHA. Finally, an iterative direct displacement based design method was developed for the proposed hybrid structure. A detailed description of the proposed methodology is presented with a numerical example. In order to verify the proposed method, hybrid buildings with 3-, 6-, and 9- storey heights were designed. A calibrated EVD-ductility relationship was used to obtain the energy dissipation of the equivalent SDOF system for all case study buildings. Nonlinear time history analysis using twenty ground motion records was used to validate the performance of the proposed design methodology. The results indicate that the proposed design method effectively controls the displacements resulting from the seismic excitation of the hybrid structure.
Online Access
Free
Resource Link
Less detail

Timber-Concrete Composite Bridges: State-of-the-Art Review

https://research.thinkwood.com/en/permalink/catalogue2125
Year of Publication
2013
Topic
Design and Systems
General Information
Material
Timber-Concrete Composite
Application
Bridges and Spans

Performance Based Seismic Design of Cross Laminated Timber Tall Buildings with Inter-Story Isolation System

https://research.thinkwood.com/en/permalink/catalogue1431
Year of Publication
2018
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bolvardi, Vahab
Organization
Colorado School of Mines
Year of Publication
2018
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Direct Displacement Design Method
Inter-Story Isolation
Mid-Rise
Tall Wood
Numerical Simulation
Shake Table Test
Language
English
Research Status
Complete
Summary
With the rapidly increasing rate of urbanization worldwide especially in high seismic regions, researchers and engineers are seeking cost-effective building systems that are sustainable and can achieve superior seismic performances. Cross Laminated Timber (CLT) is an engineered wood based material which is known as a suitable wood product for tall building construction because of its robustness and enhanced fire performance. However, the traditional CLT platform shear wall lateral system is susceptible to damage at their connections during strong earthquakes, one of the potentially viable solutions to avoid connection damage in strong earthquakes is to implement inter-story isolation system in multi-story CLT buildings. Application of such a system leads to elongated building natural period, shifted lateral displacement demands, and increased amount of damping. This concept has been used in both steel and concrete structures but not yet in any wood buildings. Traditional light-framed wood building has a height limit of 4~5 stories which inter-story isolation is not beneficial or necessary. Only until recently, CLT material enables the construction of tall wood buildings that can fully utilize the benefit of inter-story isolation. The objective of this study is to apply performance-based seismic design methodology for inter-story isolated tall CLT buildings to explicitly target desirable wood building drift and isolation deformation levels. Thus, a generalized Direct Displacement Design (DDD) philosophy for inter-story isolated CLT buildings was outlined to provide different levels of performance against moderate to strong earthquakes. The proposed DDD approach was developed and implemented with two examples of different building heights. The examples include a 12-story CLT building representing mid-rise construction, and a 20-story building representing tall wood construction. The resulted design was validated using numerical simulation with an existing software package validated through large scale shake table tests. It is discovered that for the height range currently planned for wood construction, having just one isolation layer can provide reasonable level of damage mitigation. This study also provides insight into the widely used DDD approach on a fundamental level. A specific study on the uncertainty in current DDD procedures applying to linear and nonlinear structural systems was conducted. The research work result was disseminated as peer-reviewed publications that have been published or in the process of preparation.
Online Access
Free
Resource Link
Less detail

Direct Displacement Design of Tall CLT Building with Deformable Diaphragms

https://research.thinkwood.com/en/permalink/catalogue1650
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bolvardi, Vahab
Pei, Shiling
van de Lindt, John
Dolan, James
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Inter-Story Isolation
Displacement-Based Design
Simulation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3506-3514
Summary
In order to cope with the speed of urbanization around the world especially in areas of high seismicity, researchers and engineers have always been investigating cost-effective building systems with high seismic performance. Cross Laminated Timber (CLT) is a wood based material that is suitable for tall building construction. However, the current CLT system is prone to connection damage in strong earthquakes due to the vast majority of the system ductility resides in connections. One solution is the concept of inter-story isolation to develop a potentially resilient system that can remain damage free during strong earthquakes. A generalized displacement-based design method was developed to design an inter-story isolation system for a tall wood building based on articulated damage expectations. A12-story CLT building with one isolation layer was used to illustrate the proposed design method. The building performance was validated through numerical simulation under different seismic hazard levels.
Online Access
Free
Resource Link
Less detail

Development and Full-Scale Validation of Resilience-Based Seismic Design of Tall Wood Buildings: The NHERI Tallwood Project

https://research.thinkwood.com/en/permalink/catalogue1477
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Pei, Shiling
van de Lindt, John
Ricles, James
Sause, Richard
Berman, Jeffrey
Ryan, Keri
Dolan, Daniel
Buchanan, Andrew
Robinson, Thomas
McDonnell, Eric
Blomgren, Hans-Erik
Popovski, Marjan
Rammer, Douglas
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Tall Wood
Post-Tensioned
Rocking Walls
Resilience-Based Seismic Design
Shaking Table Test
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With global urbanization trends, the demands for tall residential and mixeduse buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT). With its relatively light weight, there is consensus amongst the global wood seismic research and practitioner community that tall wood buildings have a substantial potential to become a key solution to building future seismically resilient cities. This paper introduces the NHERI Tallwood Project recentely funded by the U.S. National Science Fundation to develop and validate a seismic design methodology for tall wood buildings that incorporates high-performance structural and nonstructural systems and can quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a 4-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, fullscale biaxial testing of building sub-assembly systems, development of a resilience-based seismic design (RBSD) methodology, and finally a series of full-scale shaking table tests of a 10-story CLT building specimen to validate the proposed design. The project will deliver a new tall building type capable of transforming the urban building landscape by addressing urbanization demand while enhancing resilience and sustainability.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.