Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Alternative Load Path Analyses for Mid-Rise Post and Beam Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2448
Year of Publication
2020
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Columns
Beams

Alternate Load-Path Analysis for Mid-Rise Mass-Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1233
Year of Publication
2018
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Author
Mpidi Bita, Hercend
Tannert, Thomas
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2018
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Alternate Load-Path Analysis
Disproportionate Collapse
Lateral Loads
Language
English
Conference
Structures Conference 2018
Research Status
Complete
Notes
April 19–21, 2018, Fort Worth, Texas
Summary
This paper presents an investigation of possible disproportionate collapse for a nine-storey flat-plate timber building, designed for gravity and lateral loads. The alternate load-path analysis method is used to understand the structural response under various removal speeds. The loss of the corner and penultimate ground floor columns are the two cases selected to investigate the contribution of the cross-laminated timber (CLT) panels and their connections, towards disproportionate collapse prevention. The results show that the proposed building is safe for both cases, if the structural elements are removed at a speed slower than 1 sec. Disproportionate collapse is observed for sudden element loss, as quicker removal speed require higher moments resistance, especially at the longitudinal and transverse CLT floor-to-floor connections. The investigation also emphasises the need for strong and stiff column-to-column structural detailing as the magnitude of the vertical downward forces, at the location of the removed columns, increases for quicker removal.
Online Access
Payment Required
Resource Link
Less detail

Radiation Efficiency Of Cross Laminated Timber Panels By Finite Element Modelling

https://research.thinkwood.com/en/permalink/catalogue2422
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Author
Zhou, Jianhui
Publisher
Canadian Acoustical Association
Year of Publication
2019
Country of Publication
Canada
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Topic
Acoustics and Vibration
Keywords
Finite Element Modelling
Abaqus
Sound Radiation Efficiency
Boundary Conditions
Language
English
Research Status
Complete
Series
Journal of the Canadian Acoustical Association
Online Access
Free
Resource Link
Less detail

Finite Element Modelling of Heat and Moisture Transfer through Cross Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2414
Year of Publication
2019
Topic
Moisture
Fire
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
Application
Wood Building Systems
Walls

Quantifying the Impacts of Moisture and Load on Vertical Movement in a Simulated Bottom Floor of a 6-Storey Platform Frame Building

https://research.thinkwood.com/en/permalink/catalogue2619
Year of Publication
2013
Topic
Moisture
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Wang, J.
King, L.
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Moisture
Design and Systems
Keywords
Mid-Rise
Vertical Movement
Moisture Content
Shrinkage
Load-Induced Movement
Language
English
Research Status
Complete
Summary
Vertical movement of wood frame buildings has become an important consideration in recent years with the increase of building height in Europe, North America, and Asia up to 6-storeys. This movement is composed of wood shrinkage and load-induced movement including initial settlement and creep. It is extremely difficult to identify the relative contributions of these components while monitoring full size buildings. A laboratory test was therefore designed to do this under controlled environmental and loading conditions. Two identical small-scale platform frame structures with dimensional lumber floor joists were designed and constructed, with built-in vertical movement and moisture content monitoring systems. The two structures were first conditioned in a chamber to achieve an initial moisture content (MC) about 20% to simulate typical MC on exposed construction sites in wintertime in Coastal BC. After the two structures were moved from the conditioning chamber into the laboratory environment, using a unique cantilever system, Structure No. 1 was immediately loaded to measure the combined shrinkage and deformation in the process of drying. Structure No. 2 was not loaded until after the wood had dried to interior equilibrium moisture content to observe the shrinkage and load-induced movement separately. The load applied on the two structures simulated a dead load experienced by the bottom floor of a six-storey wood frame building. The vertical movement and MC changes were monitored over a total period of six months. Meanwhile, shrinkage coefficients were measured by using end-matched lumber samples cut from the plate members of the two structures to predict the shrinkage amounts of the horizontal members of the two structures. The results suggested that a load must be applied for movement to “show up” and occur in a downward direction. Without loads other than the wood weight, even shrinkage could show as upward movement. Monitoring of Structure No. 1 appeared to separate the contributions of wood shrinkage, initial settlement (bedding-in movement), and creep reasonably well. The entire movement amount reached about 19 mm after six months, which was comparable to the vertical movement measured from the bottom floor of a 4-storey wood-frame building in BC. Shrinkage accounted for over 60% of the vertical movement, with the other 40% contributed by load-induced movement including initial settlement and creep (when elastic compression was neglected); the magnitude of creep was similar to the initial settlement amount. Structure No. 2 showed less vertical movement but an increased settlement amount at the time of loading, indicating the presence of larger gaps between members when the wood was dry (with an estimated MC of 11%) before loading. Depending on construction sequencing, such settlement should occur with increase in loads during construction and can therefore be ignored in design. However, this test suggested that there may be a need to consider the impact of creep, in wet climates in particular, in addition to wood shrinkage. This laboratory test will be maintained for a longer period to observe any further vertical movement and the relative contributions of shrinkage and creep. Similar tests should be conducted for structures built with engineered wood floor joists, given the fact that most mid-rise platform buildings use engineered wood floor joists instead of lumber joists.
Online Access
Free
Resource Link
Less detail

Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach

https://research.thinkwood.com/en/permalink/catalogue1209
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Liu, Ying
Guo, Haibo
Sun, Cheng
Chang, Wen-Shao
Publisher
MDPI
Year of Publication
2016
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Life-Cycle Assessment
Cradle-to-Grave
China
Cold Regions
Severe Cold Regions
Energy Consumption
Mid-Rise
Residential
Language
English
Research Status
Complete
Series
Sustainability
Summary
Timber building has gained more and more attention worldwide due to it being a generic renewable material and having low environmental impact. It is widely accepted that the use of timber may be able to reduce the embodied energy of a building. However, the development of timber buildings in China is not as rapid as in some other countries. This may be because of the limitations of building regulations and technological development. Several new policies have been or are being implemented in China in order to encourage the use of timber in building construction and this could lead to a revolutionary change in the building industry in China. This paper is the first one to examine the feasibility of using Cross Laminated Timber (CLT) as an alternative solution to concrete by means of a cradle-to-grave life-cycle assessment in China. A seven-storey reference concrete building in Xi’an was selected as a case study in comparison with a redesigned CLT building. Two cities in China, in cold and severe cold regions (Xi’an and Harbin), were selected for this research. The assessment includes three different stages of the life span of a building: materialisation, operation, and end-of-life. The inventory data used in the materialisation stage was mostly local, in order to ensure that the assessment appropriately reflects the situation in China. Energy consumption in the operation stage was obtained from simulation by commercialised software IESTM, and different scenarios for recycling of timber material in the end-of-life are discussed in this paper. The results from this paper show that using CLT to replace conventional carbon intensive material would reduce energy consumption by more than 30% and reduce CO2 emission by more than 40% in both cities. This paper supports, and has shown the potential of, CLT being used in cold regions with proper detailing to minimise environmental impact.
Online Access
Free
Resource Link
Less detail

Ambient and Forced Vibration Testing and Finite Element Model Updating of a Full-Scale Posttensioned Laminated Veneer Lumber Building

https://research.thinkwood.com/en/permalink/catalogue1103
Year of Publication
2012
Topic
Seismic
Wind
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Author
Worth, Margaret
Omenzetter, Piotr
Morris, Hugh
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Wind
Acoustics and Vibration
Keywords
Post-Tensioned
Full Scale
In Situ
Finite Element Model
Dynamic Performance
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 13-15, 2012, Christchurch, New Zealand
Summary
The Nelson Marlborough Institute of Technology Arts and Media building was completed in 2011 and consists of three seismically separate complexes. This research focussed on the Arts building as it showcases the use of coupled post-tensioned timber shear walls. These are part of the innovative Expan system. Full-scale, in-situ dynamic testing of the novel building was combined with finite element modelling and updating to obtain an understanding of the structural dynamic performance within the linear range. Ambient testing was performed at three stages during construction and was combined with forced vibration testing for the final stage. This forms part of a larger instrumentation program developed to investigate the wind and seismic response and long term deformations of the building. A finite element model of the building was formulated and updated using experimental modal characteristics. It was shown that the addition of non-structural elements, such as cladding and the staircase, increased the natural frequency of the first mode and the second mode by 19% and 24%, respectively. The addition of the concrete floor topping as a structural diaphragm significantly increased the natural frequency of the first mode but not the second mode, with an increase of 123% and 18%, respectively. The elastic damping of the NMIT building at low-level vibrations was identified as being between 1.6% and 2.4%
Online Access
Free
Resource Link
Less detail

Finite Element Modeling for Vibration Transmission in a Cross Laminated Timber Structure

https://research.thinkwood.com/en/permalink/catalogue1633
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Vardaxis, Nikolaos-Georgios
Hagberg, Klas
Bard, Delphine
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Sweden
Numerical Model
Finite Element Model
Impact Noise Transmission
Impact Sound
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2953-2962
Summary
This paper deals with a certain type of C.L.T. (Cross Laminated Timber) construction, in a residential building in Fristad, Sweden. The objective is to study impact noise transmission, at the lower frequency range (10-200 Hz), where wooden dwellings perform inefficiently, in terms of acoustic quality. The vibrational behavior of lightweight structures and specifically a multilayered floor separating two vertically adjacent bedrooms are investigated. A numerical model of the multilayered test plate, which includes sound insulation and vibration isolation layers, is developed using the Finite Element Method (F.E.M.) in commercial software. The design process, the analysis and improvement of the calculated outcome concerning accuracy and complexity are of interest. In situ vibration measurements were also performed so as to evaluate the structures dynamic behavior in reality and consequently the validity of the modelled results. The whole process from design to evaluation is discussed thoroughly, where uncertainties of the complex F.E.M. model and the approximations of the real structure are analyzed. Numerical comparisons are presented including mechanical mobility and impact noise transmission results. The overall aim is to set up a template of calculations that can be used as a prediction tool in the future by the industry and researchers.
Online Access
Free
Resource Link
Less detail

CLT Feasibility Study: A Study of Alternative Construction Methods in the Pacific Northwest

https://research.thinkwood.com/en/permalink/catalogue1896
Year of Publication
2014
Topic
Design and Systems
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls

A Survey on Modelling of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1916
Year of Publication
2017
Topic
Design and Systems
Application
Wood Building Systems
Author
Chen, Zhiyong
Karacabeyli, Erol
Lum, Conroy
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Numerical Modelling
Research
Designers
Prediction
Software Tools
Empirical Equations
Design Challenges
Language
English
Research Status
Complete
Summary
A survey was conducted under the "Renessaince in Wood Construction" project that was funded by Natural Resources Canada (NRCan) under the Transformative Technologies Program to see information about numerical modelling on mass timber buildings. A questionnaire was sent to designers and researchers covering different performance attributes. The compiled information includes the available software packages and resources of empirical equations that are used by the designers and researchers for predicting the structural, fire, acoustic, and building envelope (energy and durability) performance of mass timber buildings, and the challenges that they are facing in using those tools. This report summarizes the input obtained from practicing designers and researchers who responded to this survey.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.