Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Use of Sustainable Wood Building Materials in Bosnia and Herzegovina, Slovenia and Sweden

https://research.thinkwood.com/en/permalink/catalogue836
Year of Publication
2017
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems

Sustainable Construction for Urban Infill Development Using Engineered Massive Wood Panel Systems

https://research.thinkwood.com/en/permalink/catalogue289
Year of Publication
2012
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Lehmann, Steffen
Publisher
MDPI
Year of Publication
2012
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Social Acceptance
Cultural Acceptance
North America
Australia
Housing
Language
English
Research Status
Complete
Series
Sustainability
Summary
Prefabricated engineered solid wood panel construction systems can sequester and store CO2. Modular cross-laminated timber (CLT, also called cross-lam) panels form the basis of low-carbon, engineered construction systems using solid wood panels that can be used to...
Online Access
Free
Resource Link
Less detail

Heat Transfer Tests on EPS Material and Massive Timber Wall Component

https://research.thinkwood.com/en/permalink/catalogue2224
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls

Use of Timber for the Sustainable City Growth and its Role in the Climate Change

https://research.thinkwood.com/en/permalink/catalogue2386
Year of Publication
2020
Topic
Environmental Impact
Application
Wood Building Systems
Author
Hamadyk, E
Amado, M
de Brito, J
Publisher
IOP Publishing Ltd
Year of Publication
2020
Format
Journal Article
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Sustainability
Embodied Carbon
Carbon Emissions
Construction
Language
English
Research Status
Complete
Series
IOP Conference Series: Earth and Environmental Science
Summary
According to the predictions of United Nations (2017) there are more than 7 billion people on Earth and this number will reach 9.7 billion by 2050. Today, most of the population lives in the urban areas and the rapid growth entails more construction in a housing sector. Since the industrial revolution the world has experienced countless technological attainments and on the other hand risky increase in natural resources use, energy consumption, greenhouse gases emission, ozone depletion, toxification and global temperature rising. The question how the cities can respond to urban growth is related to the sustainable goals of Agenda 2030. This research discusses potential of the usage of timber as construction material and it also brings the answer to this question. The wood is 100% renewable, recyclable and nontoxic material with capacity to absorb CO2 and perform low embodied energy. The increase of timber use in the construction contributes to sustainable development and to the reduction of waste, CO2 emission, as well as energy consumption. The aim of this paper is to discuss the advantages of using timber as a sustainable solution in urban context, in comparison with most commonly used concrete. The findings demonstrate the value of timber as sustainable construction material.
Online Access
Free
Resource Link
Less detail

Prototype Mass Timber Office Building Models: Material Quantities and Preliminary Life Cycle Assessment: Internal Report

https://research.thinkwood.com/en/permalink/catalogue2547
Year of Publication
2018
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Author
Ganguly, Indroneil
Eastin, Ivan
Simonen, Kathrina
Year of Publication
2018
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Design and Systems
Environmental Impact
Keywords
Mid-Rise
Mass Timber
Prototype
Model
LCA
Life-Cycle Assessment
Language
English
Research Status
Complete
Summary
The goal of this work was to develop material quantity estimates of a typical mid-rise office building in the Pacific Northwest and to deliver the results to the Forestry Research Team in the University of Washington (UW) College of the Environment School of Environmental and Forest Sciences. The Forestry Research Team will then use these results to develop regionally specific life cycle inventory data to support the greater study funded by the 2015 McIntire-Stennis Research Grant, which is “to assist small and medium-sized wood products companies and Native American tribal enterprises to understand and adapt to changing market conditions” (http://depts.washington.edu/sefsifr/2015-mcintire-stennis-grantwinners/).
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Constructions in a Sustainable Future – Transition to Fossil Free and Carbon Capture Technologies

https://research.thinkwood.com/en/permalink/catalogue2696
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Author
Tellnes, Lars
Saxegård, Simon
Johnsen, Fredrik Moltu
Publisher
IOP Publishing Ltd
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
Environmental Product Declaration
Carbon Capture and Storage
Climate Change
Life Cycle
Carbon Footprint
End of Life
Language
English
Research Status
Complete
Series
IOP Conference Series: Earth and Environmental Science
Summary
Cross laminated timber (CLT) has recently increased in use as a building material for low carbon design and is often applied in small and multi-story buildings. Several studies have shown lower fossil related greenhouse gas emission than alternatives, but the life cycle emissions vary substantially between different CLT producers. These emissions are mainly indirect and thus climate change mitigation could reduce these emissions. Previous research shows that that biofuels and carbon capture and storage (CCS) are technologies that have the potential to reduce the climate impacts of the CLT life cycle. This study assesses the impacts on climate change from CLT with these technologies within the framework of environmental product declarations (EPD). In the short run, switching to fossil free fuels provides a reduction in the carbon footprint of CLT. In the long run, CCS at the end-of-life of CLT buildings can provide a net negative carbon footprint over the life cycle. This assessment on the use of CLT is mainly related to the Sustainable Development Goal SDG9 Industries, innovation and infrastructure and the indicator for CO2 emissions per value added, so the assessment in this paper is mainly focused on this goal. SDG7 on affordable and clean energy and SDG15 Life on land are also relevant.
Online Access
Free
Resource Link
Less detail

Wood Innovation and Design Centre: An Environmental Building Declaration According to the EN 15978 Standard

https://research.thinkwood.com/en/permalink/catalogue2156
Year of Publication
2015
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems

Environmental Consideration of the Building Envelope in Wood Projects - Materials and LCA Approach

https://research.thinkwood.com/en/permalink/catalogue2672
Topic
Environmental Impact
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Université Laval
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Environmental Impact
Energy Performance
Keywords
Life Cycle Analysis
Energy Efficiency
Curtain Wall
Research Status
In Progress
Notes
Project contact is Pierre Blanchet at Université Laval
Summary
The work of Lessard et al. (2017) demonstrated that the building envelope was an important system in the building in terms of environmental impact, but only took into account the external components of the building envelope. This project will perform a life cycle analysis of the main building envelopes for a typical building under commercial construction. By relying on our design partners, the main systems and associated materials will be analyzed in a cradle-to-grave approach. It is desirable to identify hot spots and to indicate avenues for product development in order to reduce the envelope's environmental footprint. Among the scenarios to be considered: light framework, CLT, curtain walls and all their possible variants, but also commonly used non-biobased systems. The comparison between the systems studied will be based on an equivalent energy efficiency performance.
Resource Link
Less detail

UK Experience of the Use of Timber as a Low Embodied Carbon Structural Material

https://research.thinkwood.com/en/permalink/catalogue2140
Year of Publication
2014
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Life Cycle Assessment and Environmental Building Declaration for "Design Building"

https://research.thinkwood.com/en/permalink/catalogue720
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
O'Connor, Jennifer
Gu, Hongmei
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Research Status
In Progress
Summary
EBD was first developed by the Athena Sustainable Materials Institute. An EBD is a summary report of the comprehensive environmental footprint data for a building and declares life-cycle impacts according to a standardized format. It is a statement of pe...
Resource Link
Less detail

10 records – page 1 of 1.