Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Cyclic Testing and Simulation of Hold Down Connections in Radiata Pine CLT Shear Walls

https://research.thinkwood.com/en/permalink/catalogue1605
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Benedetti, Franco
Rosales, Víctor
Opazo, Alexander
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Mechanical Properties
Keywords
Pine
Hold-Down
Hysteretic Model
Cyclic Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2041-2050
Summary
Structures built with cross laminated timber (CLT) are an attractive alternative to traditional construction materials in terms of environmental performance and habitability, but its structural behavior is not well understood for each timber specie. This work provides a comprehensive study of the structural behavior of radiata pine CLT shear walls, by means of laboratory testing and numerical analysis of hold down connections. The observed test response of connections is replicated by calibrating two hysteretic models on OpenSees, and its fidelity is revised through the analysis of a full scale wall test and simulation. Main outcomes suggest that advanced modelling tools can accurately reproduce the hysteretic behaviour of the connections of timber panels. In terms of connections behaviour, it is observed that hold downs on radiata pine CLT elements reach less load capacity than hold downs on other wood specie, and no significant difference with the parallel to grain capacity of angle brackets connections is noticed. Besides, it is found that radiata pine CLT walls can achieve suitable cyclic loading performance and reach high levels of displacement ductility. Furthermore, the importance of friction on the load capacity of the wall is showed.
Online Access
Free
Resource Link
Less detail

Prediction of Shear Performance on Cross Laminated Timber Wall with Wall to Wall Connections

https://research.thinkwood.com/en/permalink/catalogue1781
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Oh, Jung-Kwon
Hong, Jung-Pyo
Kim, Chul-Ki
Pang, Sung-Jun
Lee, Hyeon-Jeong
Jang, Sung-Il
Park, Moon-Jae
Lee, Jun-Jae
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Keywords
Shear Performance
Failure Mode
Displacement
Peak Load
Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5503-5510
Summary
A cross-laminated timber (CLT) wall plays a role of resisting shear stress induced by lateral forces as well as resisting vertical load. Due to the press size, CLT panels have a limitation in its size. To minimize the initial investment, some glulam manufactures wanted to make a shear wall element with small-size CLT panels and panel-to-panel...
Online Access
Free
Resource Link
Less detail

Evaluating Hygrothermal Performance of Interlocking Cross-Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue804
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Glass, Samuel
Smith, Ryan
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Moisture
Keywords
Climate
Building Envelope
Hygrothermal Performance
US
Interlocking CLT
Moisture
Research Status
In Progress
Summary
Unlike other solid wood panel systems, ICLT panels are manufactured without the use of adhesives or fasteners. Wood members are connected with tongue-andgroove joints within a given layer and with dovetail joints across layers. This reduces cost and allows ICLT panels to be disassembled at end of life to be repurposed in the building material supply chain. In addition, ICLT panels provide a means to utilize lumber from trees killed by mountain pine beetle. Durability is critical for sustainable construction, and avoidance of moisture accumulation in wood structural members is essential for long-term performance. Little work has been done specifically on hygrothermal performance of massive timber construction. The objective of this research is to identify building envelope design and construction practices for robust hygrothermal performance of ICLT walls in multiple U.S. climates.
Resource Link
Less detail

Coupled Shear-Tension Numerical Model for Modelling of CLT Connections

https://research.thinkwood.com/en/permalink/catalogue1686
Year of Publication
2016
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Author
Talledo, Diego
Pozza, Luca
Saetta, Anna
Savoia, Marco
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Connections
Keywords
Numerical Model
Hold-Down
Strength
Stiffness
Tension
Shear
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4201-4209
Summary
A new numerical model able to account for the interaction between tension and shear forces on typical hold-down connections used in CLT structures is proposed and discussed, starting from results of an experimental campaign conducted at University of Bologna. A specifically developed method appropriate to evaluate the main strength and stiffness parameters from the experimental cyclic force-displacement curves is presented, and the corresponding trilinear backbone approximation is defined. Parameters obtained from tri-linear backbone curves were used to define the effect of the tension-shear interaction on the behaviour of hold-down connections, particularly as far as yielding and peak strength and stiffness parameters are concerned. In order to numerically reproduce the behaviour of connections, a coupled zero-length element is developed and presented. The model is implemented in OpenSees and adopted to model single connection element. The model is calibrated referring to experimental results of specimens loaded only in tension. Then the model is validated referring to tests with increasing level of tension-shear interaction. The proposed model is able to reproduce the actual behaviour of hold-down connection with coupled tension-shear forces under monotonic load conditions. Finally, a first proposal for accounting the hysteretic behaviour is presented, and some preliminary results are shown.
Online Access
Free
Resource Link
Less detail

Shear Connections with Self-Tapping-Screws for Cross-Laminated-Timber Panels

https://research.thinkwood.com/en/permalink/catalogue1531
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Hossain, Afrin
Popovski, Marjan
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Joints
Quasi-Static
Capacity
Stiffness
Yield Strength
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 756-763
Summary
The research presented in this paper examines the performance of 3-ply and 5-ply Cross-laminated Timber (CLT) panels connected with Self-tapping Screws (STS). Different conventional joint types (surface spline with STS in shear and half-lap joints with STS in either shear or withdrawal) along with two innovative solutions were evaluated in a total of 198 quasi-static tests. The first novel assembly used STS with double inclination of fasteners in butt joints; the second was a combination of STS in withdrawal and shear in lap joints. The joint performance was evaluated in terms of capacity, stiffness, yield strength, and ductility. The results confirmed that joints with STS in shear exhibited high ductility but low stiffness, whereas joints with STS in withdrawal were found to be stiff but less ductile. Combining the shear and withdrawal action of STS led to high stiffness and high ductility.
Online Access
Free
Resource Link
Less detail

Shear Connections with Self-Tapping-Screws for Cross-Laminated-Timber Panels

https://research.thinkwood.com/en/permalink/catalogue432
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hossain, Afrin
Lakshman, Ruthwik
Tannert, Thomas
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Ductility
Self-Tapping Screws
Stiffness
Strength
Vertical Shear Loading
Mid-Scale
Quasi-Static
Shear Tests
Language
English
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
Cross-Laminated-Timber (CLT) is increasingly gaining popularity in residential and non-residential applications in North America. To use CLT as lateral load resisting system, individual panels need to be connected. In order to provide in-plane shear connections, CLT panels may be joined with a variety of options including the use of self-tapping-screws (STS) in surface splines and half-lap joints. Alternatively, STS can be installed at an angle to the plane allowing for simple butt joints and avoiding any machining. This study investigated the performance of CLT panel assemblies connected with STS under vertical shear loading. The three aforementioned options were applied to join 3ply and 5-ply CLT panels. A total of 60 mid-scale quasi-static shear tests were performed to determine and compare the connection performance in terms of strength, stiffness, and ductility. It was shown that – depending on the screw layout – either very stiff or very ductile joint performance can be achieved.
Online Access
Payment Required
Resource Link
Less detail

Development of CLT Shear Frame Using Metal Plate Insert Connections

https://research.thinkwood.com/en/permalink/catalogue697
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Kitamori, Akihisa
Nakashima, Shoichi
Isoda, Hiroshi
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Mechanical Properties
Keywords
Failure Mode
Joints
Steel Plate
Strength
Steel Connectors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The purpose of this study is to develop a high strength leg joint for shear wall made of small size cross laminated timber panel in a simple system. The joint of CLT in which steel plate was inserted in the central slit and fixed by high strength bolt at inside of short steel pipes was proposed. In order to grasp the failure mode and strength of CLT member, material tests on embedment and shear were carried out using small CLT blocks. The test results indicated that there is few reinforce effect by cross bonding of each lamina. It was concluded that the precise estimation of the strength of CLT member is important in order to develop the joint proposed in this paper.
Online Access
Free
Resource Link
Less detail

Mechanical Behaviour of Dovetail Connections for Cross Laminated Timber Wall Elements

https://research.thinkwood.com/en/permalink/catalogue501
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Stecher, Georg
Kögl, Josef
Beikircher, Wilfried
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Mechanical Properties
Keywords
Beech
Tensile tests
Shear Tests
Dovetails
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The goal of this study is to determine the shear and tension resistance capacity of a tenon connector made out of beech plywood for the connection of cross laminated timber wall elements. To determine the tensile and shear capacity of the connector according to EN 26 891 [1], tensile and shear tests were performed on cross laminated timber elements with thicknesses of 100 mm, 150mm and 180 mm which were connected with the pin connector. The sample set consisted of 36 test specimens of which were 18 tensile specimens and 18 shear specimens. For each test series, three tensile and three shear tests with the top layer parallel and perpendicular to the load direction were performed. The test specimens were stored for four weeks in normal climate at 20 ° C and 65% relative humidity before they were tested. The shear and tension capacity shows a substantially linear behaviour by increasing the length of the connector. In the tensile tests a transverse tension failure happened in the transverse layer. In the shear tests a plastic failure of the beech plywood connector happened.
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber Shear Wall Connections for Seismic Applications

https://research.thinkwood.com/en/permalink/catalogue2405
Year of Publication
2020
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Falk, Michael
Publisher
Kansas State University
Year of Publication
2020
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Seismic
Keywords
Panels
Earthquake
Rocking Walls
Shear Walls
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber Shear Wall Connections for Seismic Applications

https://research.thinkwood.com/en/permalink/catalogue2406
Year of Publication
2020
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Falk, Michael
Publisher
Kansas State University
Year of Publication
2020
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Seismic
Keywords
Panels
Earthquake
Rocking Walls
Shear Walls
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.