Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Strength Properties of CLT Composed of Sugi Laminations : (6) Compression Parallel to the Grain and Compression Perpendicular to the Grain

https://research.thinkwood.com/en/permalink/catalogue986
Year of Publication
2013
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Ido, Hirofumi
Sugimoto, Kenichi
Nagao, Hirobumi
Miyattaki, Atsushi
Watanabe, Hiroshi
Organization
Architectural Institute of Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Sugi
Compression
Language
Japanese
Research Status
Complete
Summary
As timber tends to be weak against the load perpendicular to grains, it can be important to study the consequences of applying loads perpendicular to larch cross-laminated (CLT) composed of multiple larch laminae. Compressions tests were conducted perpendicular to the in-plane and out-of-plane grains of Japanese larch CLT. Out-of-pane average compressive strenth, average yield strength, and average compressive stiffness perpendicular to the grain of the larch CLT were 11.94 N.mm2, 7.30 N/mm2, and 7.30 N/mm2, respectively, whereas the in-plane average compressive strength, average yield strength, and average compressive stiffness perpendicular to the grain of the CLT larch were 21.48 N/mm2, 21.18 N/mm2, and 18.72 N/mm2, respectively. The in-plane compressive strength and yield strength showed a statistically significant relationship with the density fo the CLT, the modulus of elasticity measured by longitudinal vibration (MOElv), and the average MOElv of the laminae constructing the cross-laminated timber. The in-plane yield strength was affected by the MOWlv of the outer laminae and the average MOElv of the larch cross-laminated timber. The compressive strength properties were most affected by the loading surface of the CLT. The variation between the moisture content and compressive strength properties of the CLT, however, was not statistically significant.
Online Access
Free
Resource Link
Less detail

An Experimental Study on the Ductility of Bolted Connections Loaded Perpendicular to the Grain

https://research.thinkwood.com/en/permalink/catalogue512
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Kambe, Wataru
Tanaka, Kei
Kawano, Kotaro
Nakahata, Takumi
Inoue, Masafumi
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Bolts
Ductility Factor
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The fracture characteristics and deformation ability in timber engineering is very important criteria for structural design. However those fracture patterns are complex and confusing, so the quantitative evaluation is very difficult. In our past study, we could see the three fracture types and defined them the brittle, ductile and inter-mediate type with bolted connections loaded perpendicular to the grain. This definition isn’t enough because it’s not clear definition and we couldn’t study the deformation ability or ductility factor.In this study, for those connections, we would apply the evaluation method proposed by Ian et al. In this evaluation method, fracture pattern would have relevance to ductility factor. And the evaluation methods proposed by us, AIJ code and Ian et al would be compared. As a result, it is confirmed that fracture pattern based on mechanical calculation proposed by Ian could be agree with the pattern based on our video observation. Then proposed method would be useful for structural design.
Online Access
Free
Resource Link
Less detail

Compressive Strength Properties Perpendicular to the Grain of Larch Cross-laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2410
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Compression Perpendicular to Grain Behavior for the Design of a Prefabricated CLT Facade Horizontal Joint

https://research.thinkwood.com/en/permalink/catalogue1540
Year of Publication
2016
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Author
Gasparri, Eugenia
Lam, Frank
Liu, Yingyang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Connections
Design and Systems
Keywords
Envelope
Joints
Self-Tapping Screws
Finite Element Analysis
Prefabricated
Vertical Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1088-1098
Summary
The present work aims to define horizontal joint dimension tolerances for newly proposed prefabricated façade systems for applications in tall cross laminated timber (CLT) buildings based on the compression perpendicular to grain characteristics of the component. This requires a thorough understanding of structural settlement under vertical loads which can vary at each floor height. An experimental program has been carried out with reference to the case of a platform frame building construction, where major perpendicular to grain compression of the floor can occur under high loads. Five-layer CLT specimens have been tested under compression via the application of a line load with steel plate as well as actual CLT wall specimens. Strengthening contribution using full threaded self-tapping wood screws has also been investigated. Results of deformation characteristics have been validated through a non-linear finite element analysis and further elaborated in order to outline implications in the design of a prefabricated façade.
Online Access
Free
Resource Link
Less detail

Compressive Strength Properties Perpendicular to the Grain of Cross-Laminated Timber (CLT) Composed of Sugi Laminations

https://research.thinkwood.com/en/permalink/catalogue926
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Hiroshi, Imichi
Nagao, Hirofumi
Miura, Sachiko
Miyatake, Atsushi
Publisher
J-STAGE
Year of Publication
2014
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Cedar
Penetration Test
Clamping Strength
Proportional Limit Stress
Language
Japanese
Research Status
Complete
Series
Journal of Wood Society
Summary
For a cross-laminated timber (CLT) manufactured using Sugi, a digging test was performed by changing the number of layers, the laminar configuration, the direction of the outer layer laminar with respect to the direction of the pressure plate, and the arrangement of the test piece with respect to the load direction, and each combination was performed. In addition to clarifying the sunk strength performance of CLT, a method for easily evaluating the sunk strength performance was examined. As a result of the sinking test, it was found that the parameters that determine the sinking strength performance are the direction of the outer layer laminar and the arrangement of the test piece, and the number of layers and the laminar configuration do not contribute much to the sinking strength performance. When the proportional limit stress of CLT was estimated using the proportional limit stress of each laminar, the estimated value and the measured value were in relatively good agreement.
Online Access
Free
Resource Link
Less detail

Tall Timber Buildings - A Preliminary Study of Wind-Induced Vibrations of a 22-Storey Building

https://research.thinkwood.com/en/permalink/catalogue1662
Year of Publication
2016
Topic
Wind
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Jarnerö, Kirsi
Landel, Pierre
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Wind
Mechanical Properties
Keywords
Finite Element Model
Damping
Mass
Stiffness
Peak Acceleration
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3657-3664
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-tohigh-rise buildings with light-weight timber structures have been designed and built. Examples of such are the 8-storey building “Limnologen” in Växjö, Sweden, the 9-storey “Stadthouse” in London, UK and the 14-storey building “Treet” in Bergen, Norway. The structures are all light-weight and flexible timber structures which raise questions regarding wind induced vibrations. This paper will present a finite element-model of a 22 storey building with a glulam-CLT structure. The model will be used to study the effect of different structural properties such as damping, mass and stiffness on the peak acceleration and will be compared to the ISO 10137 vibration criteria for human comfort. The results show that it is crucial to take wind-induced vibrations into account in the design of tall timber buildings.
Online Access
Free
Resource Link
Less detail

Non-Uniformly Distributed Compression Perpendicular to the Grain in Steel-CLT Connections: Experimental and Numerical Analysis of Bearing Capacity and Displacement Behaviour

https://research.thinkwood.com/en/permalink/catalogue2363
Year of Publication
2019
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Ncube, Noah
Sabaa, Stephen
Publisher
Linnaeus University
Year of Publication
2019
Country of Publication
Sweden
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Keywords
Compression
Perpendicular to the Grain
Non-Uniformly Distributed
Finite Element
Load Configuration Factor
Steel Connections
Load
Language
English
Research Status
Complete
Summary
Previous studies have mainly focused on the behaviour of timber under uniformly distributed compression perpendicular to the grain (CPG) loads. However, there are many practical applications in which timber is loaded by non-uniformly distributed CPG loads. Different design and test codes like the Eurocode 5 (EC5), DIN 1052:2004, ASTM D143- 94 and EN-408:2010 only account for load configurations where timber is subjected to uniformly distributed loads. For specific uniformly distributed load (UDL) configurations the bearing capacity of timber (solid softwood timber or Glulam) in compression is adapted by using a load configuration factor (kc,90) according to EC5, the European code for design of timber structures. EC5 has no guidelines for cross-laminated timber (CLT) under UDL with the exception of the Austrian National Regulations for EC5. In this work, an experimental and numerical study on the bearing capacity and displacement behaviour of CLT subjected to non-uniformly distributed loading (NuDL) is conducted on eight different load configurations. A steel-CLT connection in which the CLT is partially loaded is used in this study. Finite element modelling, performed using the commercial software Abaqus CAE is used as the numerical simulation of the experimental study and is validated by experimental results. Load configuration factors (kc,90) from experimental results are compared with values from the Swedish CLT handbook (KL-Trähandbok). The outcome of the study shows that load configuration factor for NuDL cases is higher than for UDL cases. Hence, for same load configurations a lower CPG strength is required in NuDL than in UDL. Moreover, numerical results feature overall good congruence with the elastic phase of the experiments and have the potential to augment experiments in further understanding other complex steel-CLT connections
Online Access
Free
Resource Link
Less detail

Valuation of the Composite Action of Lightweight and Prefabricated Concrete-Wood Floors for Multi-Storey Buildings

https://research.thinkwood.com/en/permalink/catalogue2666
Topic
Connections
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Wood Building Systems
Organization
Université Laval
Country of Publication
Canada
Material
Timber-Concrete Composite
Application
Floors
Wood Building Systems
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Finite Element Analysis
Span Limits
Shear Test
Bending Test
Research Status
In Progress
Notes
Project contact is Luca Sorelli at Université Laval
Summary
This project aims to develop a new precast wood / concrete floor system that can push the span limits in multi-storey wood buildings. The multidisciplinary methodology includes a finite element analysis technique using the “DDuctileTCS” software developed at CIRCERB, shear tests on connections, bending tests of the composite beam and an extension of technical standards for the design of composite structures. This project will develop solutions to optimize the composite action and vibration of long-span precast and mixed floors. The methodology consists of: (i) analysis of systems and optimization of shapes by numerical finite element techniques; (ii) connection shear tests; (iii) proof of concept on a prototype beam in the laboratory.
Resource Link
Less detail

Study on Timber Framed Joints Using Drift Pins and UV-Hardening FRP

https://research.thinkwood.com/en/permalink/catalogue538
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Author
Matsumoto, Shinya
Mitsui, Shuhei
Ohkubo, Takaaki
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Topic
Connections
Mechanical Properties
Keywords
Fiber Reinforced Polymer
Beam-to-Column Joints
Ductility
Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The joints are very important structural element in timber framed structures. The purpose of this study is to develop the high-strength and high-ductility beam-column joint for timber structure. In this study, steel plate fastened with drift pins and paste the ultraviolet-ray hardening Fiber Reinforced Plastics (FRP) on the surface of the member section. The wood is the anisotropic material of which the strength characteristic greatly differs according to the direction of the fiber. The strength of the fiber direction is high, but the strength of the fiber orthogonal direction is low. Also, the splitting failure is caused in the fiber orthogonal direction, and there is a case in which strength and toughness extremely lower. It is necessary to consider the weak point of such woody material for the case in which the wood is used as a structural element for timber framed structure. It is very important to be ensured the earthquake-proof safety of the building, and prevent a building collapse for the great earthquake. This study reinforces weak point on the strength of woody material by using the ultraviolet-ray hardening FRP. Then, timber framed joint of the high-strength and high ductility is developed as a structural element. In this study, the verification experiment is carried out for the joint element specimens of the large section wood.
Online Access
Free
Resource Link
Less detail

Behaviour of Parallel Bamboo Strand Lumber Under Compression Loading — An Experimental Study

https://research.thinkwood.com/en/permalink/catalogue2514
Year of Publication
2019
Topic
Design and Systems
Mechanical Properties
Material
PSL (Parallel Strand Lumber)
Other Materials
Application
Wood Building Systems

10 records – page 1 of 1.