Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Energy Based Seismic Design of a Multi-Storey Hybrid Building: Timber-Steel Core Walls

https://research.thinkwood.com/en/permalink/catalogue1271
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Goertz, Caleb
Organization
University of British Columbia
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Design and Systems
Keywords
Timber-Steel Hybrid
Core Walls
Multi-Storey
High Seismic Regions
Steel Plates
Equivalent Static Force Procedure
Nonlinear Time History Analysis
Language
English
Research Status
Complete
Summary
This thesis discusses a novel timber-steel core wall system for use in multi-storey buildings in high seismic regions. This hybrid system combines Cross Laminated Timber (CLT) panels with steel plates and connections to provide the required strength and ductility to core walled buildings. The system is first derived from first principles and validated in SAP2000. In order to assess the feasibility of the system it is implemented in the design of a 7-storey building based off an already built concrete benchmark building. The design is carried out following the equivalent static force procedure (ESFP) outlined by the National Building Code of Canada for Vancouver, BC. To evaluate the design bi-directional nonlinear time history analysis (NLTHA) is carried out on the building using a set of 10 ground motions based on a conditional mean spectrum. To improve the applicability of the hybrid system an energy based design methodology is proposed to design the timber-core walled building. The methodology is proposed as it does not rely on empirical formulas and force modification factors to determine the final design of the structure. NLTHA is carried out on the proposed methodology using 10 ground motions to evaluate the suitability of the method and the results are discussed and compared to the ESFP results.
Online Access
Free
Resource Link
Less detail

Performance-Based Design as a Tool to Evaluate Behavior Factors for Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1684
Year of Publication
2016
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Hummel, Johannes
Seim, Werner
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Keywords
Displacement-Based Design
Force-Based Design
Multi-Storey
Behaviour Factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4086-4095
Summary
This paper deals with aspects of force- and displacement-based design of multistorey cross-laminated timber (CLT) structures. A method to determine the behavior factors for timber structures based on nonlinear static analyses will be discussed. Different types of analysis models are considered. Results of experimental investigations on connections and CLT wall elements will be presented as a basis for numerical simulations.
Online Access
Free
Resource Link
Less detail

Design Example: Design of Stacked Multi-Storey Wood Shear Walls Using a Mechanics Based Approach

https://research.thinkwood.com/en/permalink/catalogue739
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Newfield, Grant
Ni, Chun
Wang, Jasmine
Organization
Canadian Wood Council
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Codes
National Building Code of Canada
Lateral Seismic Loads
Language
English
Research Status
Complete
Summary
Figure 1 shows a floor plan and elevation along with the preliminary shear wall locations for a sixstorey wood-frame building. It is assumed some preliminary calculations have been provided to determine the approximate length of wall required to resist the lateral seismic loads. If the preliminary design could not meet the drift limit requirement using the base shear obtained based on the actual period, the shear walls should be re-designed until the drift limit requirement is satisfied.
Online Access
Free
Resource Link
Less detail

Timber-Steel Hybrid Beams for Multi-Storey Buildings: Design Criteria, Calculation and Tests

https://research.thinkwood.com/en/permalink/catalogue623
Year of Publication
2014
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Tavoussi, Kamyar
Winter, Wolfgang
Pixner, Tamir
Riola Parada, Felipe
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Keywords
Timber-Steel Hybrid
Multi-Storey
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Timber-steel hybrid elements are structurally reliable, clean and fast to assemble and disassemble, light, ecologic and economic. Design criteria and a calculation model for beams were developed and a series of real scale tests were carried out in order to check their performance. The results proved to be satisfactory and promising for the final objective of building structural frames for different types of multi-story buildings.
Online Access
Free
Resource Link
Less detail

Hybrid CLT-Based Modular Construction Systems for Prefabricated Buildings

https://research.thinkwood.com/en/permalink/catalogue1901
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Wood Building Systems
Floors
Walls

Semi-Rigid Joints of Timber-Steel Hybrid Beams for Multi-Storey Buildings

https://research.thinkwood.com/en/permalink/catalogue1755
Year of Publication
2016
Topic
Design and Systems
Connections
Mechanical Properties
Material
Steel-Timber Composite
Application
Beams
Frames
Author
Tavoussi, Kamyar
Winter, Wolfgang
Bradley, Andrew
Riola Parada, Felipe
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Steel-Timber Composite
Application
Beams
Frames
Topic
Design and Systems
Connections
Mechanical Properties
Keywords
Multi-Storey
Single Span Tests
Semi-Rigid Joints
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5023-5030
Online Access
Free
Resource Link
Less detail

Development of Light Prefabricated Hybrid Structures for a High-Rise Multi-Storey Building with Emphasis on Connections

https://research.thinkwood.com/en/permalink/catalogue2248
Topic
Cost
Design and Systems
Material
Timber-Concrete Composite
Application
Floors
Organization
Université Laval
Country of Publication
Canada
Material
Timber-Concrete Composite
Application
Floors
Topic
Cost
Design and Systems
Keywords
Vibration
Fire Resistance
Seismic
Ductile
Connections
Ultra-High Performance Concrete
Prefabrication
Research Status
In Progress
Notes
Project contact is Luca Sorelli at Université Laval
Summary
Hybrid wood-concrete structures are emerging in the multi-storey wood building market, as they provide effective solutions in terms of lightness, rigidity, vibration and fire resistance (Yeoh et al., 2010, Dagenais et al., 2016). This project aims to reduce the cost of these hybrid floors by reducing the time of construction by prefabrication technology with emphasis on use. In addition, the goal is to explore the use of Ultra High Performance Fiber Composite Concrete (UHPC) to reduce the thickness of the wood slab, and also the use of ductile connections to increase the reliability of the floor (Habel and Gauvreau). 2008, Zhang and Gauvreau 2014, Auclair-Cuerrier et al 2016a). Finally, the concrete slab improves the diaphragm behavior of the floor to seismic actions.
Less detail

Seismic Design of Core-Wall Systems for Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1149
Year of Publication
2014
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shafts and Chases
Author
Dunbar, Andrew
Organization
University of Canterbury
Year of Publication
2014
Country of Publication
New Zealand
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shafts and Chases
Topic
Seismic
Design and Systems
Keywords
Post-Tensioned
Core-Walls
Quasi-Static
Seismic Loading
Multi-Storey
U-Shaped Flexural Plates
Language
English
Research Status
Complete
Summary
This thesis discusses the results of experimental tests on two post-tensioned timber core-walls, tested under bi-directional quasi-static seismic loading. The half-scale two-storey test specimens included a stair with half-flight landings. Multi-storey timber structures are becoming increasingly desirable for architects and building owners due to their aesthetic and environmental benefits. In addition, there is increasing public pressure to have low damage structural systems with minimal business interruption after a moderate to severe seismic event. Timber has been used extensively for low-rise residential structures in the past, but has been utilised much less for multi-storey structures, traditionally limited to residential type building layouts which use light timber framing and include many walls to form a lateral load resisting system. This is undesirable for multi-storey commercial buildings which need large open spaces providing building owners with versatility in their desired floor plan. The use of Cross-Laminated Timber (CLT) panels for multi-storey timber buildings is gaining popularity throughout the world, especially for residential construction. Previous experimental testing has been done on the in-plane behaviour of single and coupled post-tensioned timber walls at the University of Canterbury and elsewhere. However, there has been very little research done on the 3D behaviour of timber walls that are orthogonal to each other and no research to date into post-tensioned CLT walls. The “high seismic option” consisted of full height post-tensioned CLT walls coupled with energy dissipating U-shaped Flexural Plates (UFPs) attached at the vertical joints between coupled wall panels and between wall panels and the steel corner columns. An alternative “low seismic option” consisted of post-tensioned CLT panels connected by screws, to provide a semi-rigid connection, allowing relative movement between the panels, producing some level of frictional energy dissipation.
Online Access
Free
Resource Link
Less detail

A Mechanics Based Approach for Determining Deflections of Stacked Multi-Storey Wood Based Shear Walls

https://research.thinkwood.com/en/permalink/catalogue738
Year of Publication
2013
Topic
Mechanical Properties
Serviceability
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Newfield, Grant
Ni, Chun
Wang, Jasmine
Organization
Canadian Wood Council
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Serviceability
Keywords
Multi-Storey
Deflection
Flexural Deformations
Shear
Language
English
Research Status
Complete
Summary
The 2009 edition of CSA Standard O86, Engineering Design in Wood (CSA 2009), provides an equation for determining the deflection of shear walls. It is important to note that this equation only works for a single-storey shear wall with load applied at the top of the wall. While the equation captures the shear and flexural deformations of the shear wall, it does not account for moment at the top of the wall and the cumulative effect due to rotation at the bottom of the wall, which would be expected in a multi-storey structure. In this fact sheet, a mechanics-based method for calculating deflection of a multi-storey wood-based shear wall is presented.
Online Access
Free
Resource Link
Less detail

Structural Characterization of Multi-Storey Buildings with CLT Cores

https://research.thinkwood.com/en/permalink/catalogue496
Year of Publication
2014
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Polastri, Andrea
Pozza, Luca
Trutalli, Davide
Scotta, Roberto
Smith, Ian
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Keywords
Multi-Storey
Numerical model
Building Cores
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The behaviour of multi-storey buildings braced with Cross-Laminated-Timber (CLT) cores and additional shear walls is examined based on numerical analyses of various 3-dimensional configurations. Two ways of calibrating numerical model are proposed according to codes and experimental test data respectively, including calibration of parameters that characterise connections between CLT panels in building cores and shear walls. Results of analyses of entire buildings are presented in terms of principal elastic periods, and base shear and up-lift forces. Discussion addresses primary issues associated with behaviour of such systems and modelling them.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.