Skip header and navigation

5 records – page 1 of 1.

The strength of Glulam Beams with Holes - A Probabilistic Fracture Mechanics Method and Experimental Tests

https://research.thinkwood.com/en/permalink/catalogue2238
Year of Publication
2009
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

Improvement of Prediction Accuracy of Glulam Modulus of Elasticity by Considering Neutral Axis Shift in Bending

https://research.thinkwood.com/en/permalink/catalogue1467
Year of Publication
2009
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Shim, Kug-Bo
Kim, Kwang-Mo
Park, Joo-Saeng
Publisher
Society of Wood Science and Technology
Year of Publication
2009
Country of Publication
United States
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Modulus of Elasticity
Transformed Section Method
Language
English
Research Status
Complete
Series
Wood and Fiber Science
Summary
There is a discrepancy between the estimated modulus of elasticity (MOE) of glulam based on the dynamic MOE of laminates and measured MOE. The discrepancy is greater for glulam manufactured with mixed species. This study was undertaken to reduce the discrepancy between those MOE values. The error rate of predicting MOE of glulam by the transformed section method, without considering tension and compression modulus differences, was about 30%. To estimate the MOE of glulam more accurately, the differences between compression and tension modulus should be taken into account in the transformed section method. The measured tensile and compressive strain at the center of glulam under a bending load showed the movement of neutral axis toward the tension side of glulam. Therefore, the compression and tension modulus differences for each species should be identified before estimating the MOE of glulam. The prediction of glulam MOE was improved significantly by reflecting the ratio of compression and tension modulus vs dynamic MOE of laminates. The outermost of laminates in the compression side under bending load experienced plastic behavior and failure. This caused the neutral axis to move to the tension side and increased tension stress to cause the glulam to fail abruptly in tension. To improve the bending performance of glulam, reinforcing compression laminates need to be considered.
Online Access
Free
Resource Link
Less detail

Lateral Load Resisting Systems for Engineered Wood Construction

https://research.thinkwood.com/en/permalink/catalogue2637
Year of Publication
2009
Topic
Design and Systems
Wind
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2009
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Design and Systems
Wind
Seismic
Keywords
Lateral Load Resisting System
Construction
Language
English
Research Status
Complete
Summary
The main sources of lateral loads on buildings are either strong winds or earthquakes. These lateral forces are resisted by the buildings’ Lateral Load Resisting Systems (LLRSs). Adequate design of these systems is of paramount importance for the structural behaviour in general. Basic procedures for design of buildings subjected to lateral loads are provided in national and international model building codes. Additional lateral load design provisions can be found in national and international material design standards. The seismic and wind design provisions for engineered wood structures in Canada need to be enhanced to be compatible with those available for other materials such as steel and concrete. Such design provisions are of vital importance for ensuring a competitive position of timber structures relative to reinforced concrete and steel structures. In this project a new design Section on Lateral Load Resisting Systems was drafted and prepared for future implementation in CSA O86, the Canadian Standard for Engineering Design in Wood. The new Section was prepared based on gathering existing research information on the behaviour of various structural systems used in engineered wood construction around the world as well as developing in-house research information by conducting experimental tests and analytical studies on structural systems subjected to lateral loads. This section for the first time tried to link the system behaviour to that of the connections in the system. Although the developed Section could not have been implemented in CSA O86 in its entirety during the latest code cycle that ended in 2008, the information it contains will form the foundation for future development of technical polls for implementation in the upcoming editions of CSA O86. Some parts of the developed Section were implemented in the 2009 edition of CSA O86 as five separate technical polls. The most important technical poll was the one on Special Seismic Design Considerations for Shearwalls and Diaphragms. This technical poll for the first time in North America includes partial capacity design procedures for wood buildings, and represents a significant step forward towards implementing full capacity-based seismic design procedures for wood structures. Implementation of these design procedures also eliminated most of the confusion and hurdles related to the design of wood-based diaphragms according to 2005 National Building Code of Canada. In other polls, the limit for use of unblocked shearwalls in CSA O86 was raised to 4.8 m, and based on the test results conducted during the project, the NLGA SPS3 fingerjoined studs were allowed to be used as substitutes for regular dimension lumber studs in shearwall applications in engineered buildings in Canada. With the US being the largest export market for the Canadian forest products industry, participation at code development committees in the field of structural and wood engineering in the US is of paramount importance. As a result of extensive activities during this project, for the first time one of the AF&PA Special Design Provisions for Wind and Seismic includes design values for unblocked shearwalls that were implemented based on FPInnovations’ research results. In addition, the project leader was involved in various aspects related to the NEESWood project in the US, in part of which a full scale six-storey wood-frame building will be tested at the E-Defense shake table in Miki, Japan in July 2009. Apart from being built from lumber and glued-laminated timber provided from Canada, the building will also feature the innovative Midply wood wall system that was also invented in Canada. The tests are expected to provide further technical evidence for increasing the height limits for platform frame construction in North America. Building construction - Design Earthquakes, Effect on building construction Glued joints - Finger Grading - Lumber Wind loads
Online Access
Free
Resource Link
Less detail

Seismic Performance of 6-Storey Wood-Frame Buildings: Final Report

https://research.thinkwood.com/en/permalink/catalogue2638
Year of Publication
2009
Topic
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Ni, Chun
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2009
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Seismic
Keywords
Mid-Rise
Residential
Building Code
Language
English
Research Status
Complete
Summary
spIn this report, the seismic performance of 6-storey wood frame residential buildings is studied. Two building configurations, a typical wood-frame residential building and a building to be tested under the NEESWood project, were studied. For each building configuration, a four-storey building and a six-storey building were designed to the current (pre-April 6, 2009) 2006 BC Building Code (BCBC) and to the anticipated new requirements in the 2010 National Building Code of Canada (NBCC), resulting in four buildings with different designs. The four-storey building designed to the current 2006 BC Building Code served as the benchmark building representing the performance of current permissible structures with common architectural layouts. In the design of both four-storey and six-storey buildings, it was assumed that the buildings are located in Vancouver on a site with soil class C. Instead of using the code formula, the fundamental natural period of the buildings was determined based on the actual mass and stiffness of wood-based shearwalls. The base shear and inter-storey drift are determined in accordance with Clauses 4.1.8.11.(3)(d)(iii) and 4.1.8.11.(3)(d)(iv) of BCBC, respectively. Computer programs DRAIN 3-D and SAPWood were used to evaluate the seismic performance of the buildings. A series of 20 different earthquake records, 14 of the crustal type and 6 of the subcrustal type, were provided by the Earthquake Engineering Research Facility of the University of British Columbia and used in the evaluation. The records were chosen to fit the 2005 NBCC mean PSA and PSV spectra for the city of Vancouver. For representative buildings designed in accordance with 2006 BCBC, seismic performance with and without gypsum wall board (GWB) is studied. For representative buildings designed in accordance with the 2010 NBCC, the seismic performance with GWB is studied. For the NEESWood building redesigned in accordance with 2010 NBCC, seismic performance without GWB is studied. Ignoring the contribution of GWB would result in a conservative estimate of the seismic performance of the building. In the 2006 BCBC and 2010 NBCC, the inter-storey drift limit is set at 2.5 % of the storey height for the very rare earthquake event (1 in 2475 year return period). Limiting inter-storey drift is a key parameter for meeting the objective of life safety under a seismic event. For 4-storey and 6-storey representative wood-frame buildings where only wood-based shearwalls are considered, results from both DRAIN-3D and SAPWood show that none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit given in the building code. With DRAIN-3D, the average maximum inter-storey drifts are approximately 1.2% and 1.5% for 4-storey and 6-storey buildings designed with 2006 BCBC, respectively. For the NEESWood wood-frame building, none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit for 4-storey building obtained from SAPWood and 6-storey building obtained from DRAIN-3D and SAPWood. For any 4-storey building analysed with DRAIN-3D, approximately half of the earthquakes resulted in the maximum inter-storey drifts greater than 2.5% inter-storey limit. This is partly due to the assumptions used in Drain-3D model in which the lumped mass at each storey is equally distributed to all the nodes of the floor. As a result, the total weight to counteract the uplift force at the ends of a wall would be much smaller than that anticipated in the design, thus causing hold-downs to yield and large uplift deformations to occur. Based on the analyses of a representative building and a redesigned NEESWood building situated in the city of Vancouver that subjected the structures to 20 earthquake records, 6-storey wood-frame building is expected to show similar or smaller inter-storey drift than a 4-storey wood-frame building, which is currently deemed acceptable under the current building code. Building construction - Design Building construction - Specfications Earthquakes, Effect on building construction
Online Access
Free
Resource Link
Less detail

New Applications of Timber in Non-Traditional Market Segments, High Rise Residential and Non-Residential (Commercial) Buildings

https://research.thinkwood.com/en/permalink/catalogue1934
Year of Publication
2009
Topic
Market and Adoption
Application
Wood Building Systems