Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Fire Testing for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1828
Year of Publication
2017
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Beams
Columns
Organization
SWRI
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Beams
Columns
Topic
Fire
Keywords
Fire Endurance Tests
Connections
Assembly
Fabrication
Thermocouples
Beam Column Connection
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
A. Fire Test Results Summary B. Test 1a (Test 1): Beam-Exterior Column Connection Report C. Test 1a (Test 2): Beam-Exterior Column Connection Report D. Test 1a (Test 3): Beam-Exterior Column Connection Report E. Test 1a (Test 4): Beam-Exterior Column Connection Report F. Test 1b (Test 1): CLT Deck to Beam Report G. Test 1b (Test 2): CLT Deck to Beam Report H. Test 1b (Test 3): CLT Deck to Beam Report I. Test 1c: Penetrations Fire Resistance Rating Report (TBD) J. Test 1d: Wall Fire Resistance Rating Report
Online Access
Free
Resource Link
Less detail

Structural Fire Design of Tall Timber Buildings Using Cross Laminated Timber (CLT) to Eurocodes

https://research.thinkwood.com/en/permalink/catalogue1779
Year of Publication
2016
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zhang, Binsheng
Zhao, Xuan
Sandersaon, Iain
Kilpatrick, Tony
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
Fire Safety
Model
Numerical Simulation
Eurocode
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5445-5454
Summary
The development and renaissance of modern engineered products, advanced connections and modern construction technology have made it viable to design and construct multi-storey timber buildings. However, a number of issues need to be raised urgently, in particular fire safety and secondary structural effects. This research aims to...
Online Access
Free
Resource Link
Less detail

Compartment Fire Testing of a Two-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue1825
Year of Publication
2018
Topic
Fire
Application
Wood Building Systems

Modelling the Fire Performance of Structural Timber Floors

https://research.thinkwood.com/en/permalink/catalogue212
Year of Publication
2012
Topic
Design and Systems
Fire
Material
Timber-Concrete Composite
Application
Floors
Author
O'Neill, James
Abu, Anthony
Carradine, David
Moss, Peter
Buchanan, Andrew
Year of Publication
2012
Country of Publication
Switzerland
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Fire
Keywords
Failure Mechanisms
Finite Element Model
Fire Resistance
Thermo-mechanical
Full Scale
Language
English
Conference
International Conference on Structures in Fire
Research Status
Complete
Notes
June 6-8, 2012, Zurich, Switzerland
Summary
This paper describes numerical modelling to predict the fire resistance of engineered timber floor systems. The floor systems under investigation are timber composite floors (various timber joist and box floor cross sections), and timber-concrete composite floors. The paper describes 3D numerical modelling of the floor systems using finite element software, carried out as a sequential thermo-mechanical analysis. Experimental testing of these floor assemblies is also being undertaken to calibrate and validate the models, with a number of full scale tests to determine the failure mechanisms for each floor type and assess fire damage to the respective system components. The final outcome of this research will be simplified design methods for calculating the fire resistance of a wide range of engineered timber floor systems.
Online Access
Free
Resource Link
Less detail

Structural Response of Cross-Laminated Timber Compression Elements Exposed to Fire

https://research.thinkwood.com/en/permalink/catalogue1338
Year of Publication
2017
Topic
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Wiesner, Felix
Randmael, Fredrik
Wan, Wing
Bisby, Luke
Hadden, Rory
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Mechanical Properties
Keywords
Reduced Cross-Section Method
Axial Load
Compressive Load
Deformation
Temperature
Zero-Strength Layer
Language
English
Research Status
Complete
Series
Fire Safety Journal
Summary
A set of novel structural fire tests on axially loaded cross-laminated timber (CLT) compression elements (walls), locally exposed to thermal radiation sufficient to cause sustained flaming combustion, are presented and discussed. Test specimens were subjected to a sustained compressive load, equivalent to 10 % or 20 % of their nominal ambient axial compressive capacity. The walls were then locally exposed to a nominal constant incident heat flux of 50 kW/m2 over their mid height area until failure occurred. The axial and lateral deformations of the walls were measured and compared against predictions calculated using a finite Bernoulli beam element analysis, to shed light on the fundamental mechanics and needs for rational structural design of CLT compression elements in fire. For the walls tested herein, failure at both ambient and elevated temperature was due to global buckling. At high temperature failure results from excessive lateral deflections and second order flexural effects due to reductions the walls’ effective crosssection and flexural rigidity, as well as a shift of the effective neutral axis in bending during fire. Measured average one-dimensional charring rates ranged between 0.82 and 1.0 mm/min in these tests. As expected, the lamellae configuration greatly influenced the walls’ deformation responses and times to failure; with 3- ply walls failing earlier than those with 5-plies. The walls’ deformation response during heating suggests that, if a conventional reduced cross section method (RCSM), zero strength layer analysis were undertaken, the required zero strength layer depths would range between 15.2 mm and 21.8 mm. Deflection paths further suggest that the concept of a zero strength layer is inadequate for properly capturing the mechanical response of fire-exposed CLT compression elements.
Online Access
Free
Resource Link
Less detail

Structural Fire Design-Statement on the Design of Cross-Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue2398
Year of Publication
2019
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Schmid, Joachim
Werther, Norman
Klippel, Michael
Frangi, Andrea
Publisher
Juniper Publishers
Year of Publication
2019
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Design and Systems
Keywords
Fire Safe Design
Fire Characteristics
Building Codes
Language
English
Research Status
Complete
Series
Civil Engineering Research Journal
Online Access
Free
Resource Link
Less detail

Structural Capacity in Fire of Laminated Timber Elements in Compartments with Exposed Timber Surfaces

https://research.thinkwood.com/en/permalink/catalogue2105
Year of Publication
2019
Topic
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Rooms

Fire Testing for Efficient Tall Timber Buildings - Scoping Study for Adaptive Reuse of the NHERI Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue2786
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Large Scale
Fire Test
Multi-Storey
Mass Timber
Beam-to-Column Connectors
Safety
Firefight
Vertical Fire Spread
Façade
Research Status
In Progress
Notes
Project contact is Erica Fischer, Oregon State University
Summary
Previous large-scale fire testing of mass timber buildings has occurred on a single floor of a building. The data collected from these experiments were used to demonstrate the fire performance of cross-laminated timber (CLT) buildings and to change the International Building Code (IBC) prescriptive fire protection design provisions for mass timber buildings. The scope of the tests was limited to compartment fires with varying levels of encapsulation. However, multi-story mass timber buildings are being constructed in the United States and fire science experts understand that fire threats can move beyond compartment fires and into travelling (moving fires) and vertical fire spread. In addition, many buildings are being proposed outside of the scope of the IBC prescriptive fire protection design approach (i.e. open floor plans), thereby requiring the employment of performance-based structural fire engineering. Performance-based structural fire engineering requires quantifying fire demands within the structure and calculating the resistance of the structure throughout the fire to provide safety to the occupants during egress, safety to fire fighters during and after the fire, and to ensure the building will not collapse introducing a threat of fire spread and damage to the surrounding buildings. To date, engineers are employing performance-based structural fire engineering on mass timber buildings; however, engineers are typically forced to make simplifications, be very conservative, and/or frequently use unproven assumptions. These simplifications and assumptions need to be tested experimentally to ensure that engineers are providing adequate levels of safety. Some of these assumptions include exterior wall and façade details that can prevent vertical fire spread, and detailing by engineers that considers the effects of charring during the decay phase of the fire. The PIs have an opportunity to perform large-scale fire tests on a multi-story mass timber building in Corvallis, OR. Future large-scale fire tests will utilize a portion of the 10-story building being tested as a part of the Natural Hazards Engineering Research Infrastructure (NHERI) Tall Wood project (http://nheritallwood.mines.edu/). After the seismic testing of the 10-story building, the top four stories will be demolished and not utilized. Therefore, the research team will transport these floors to Corvallis to be re-assembled at the Corvallis Fire Training Center. In this preliminary stage, a multi-disciplinary team will perform computer simulation modeling of the fire tests, fully develop the scope of the tests and create a detailed experimental plan for the large-scale fire tests. The tests will be designed with considerations for the ability to address the following questions. These questions are consistent with future research needs that were identified by the Forest Products Laboratory [5] and the recent National Fire Protection Association (NFPA) Fire Safety in Tall Timber Buildings Workshop. (1) How does the façade detailing of a mass timber building influence the vertical fire spread behavior? (2) How can engineers better design mass timber buildings to enhance the safety for firefighters? (3) How do glulam beam-to-column connections perform in real fires? (4) What engineering solutions can be implemented within mass timber buildings to account for the behavior of the mass timber during the decay phase of the fire in the case that suppression is not available? (5) How can engineers better design mass timber buildings to enhance the safety for fire fighters during the firefight and during overhaul/investigation?
Resource Link
Less detail

Structural Response of Fire-Exposed Cross-Laminated Timber Beams under Sustained Loads

https://research.thinkwood.com/en/permalink/catalogue1364
Year of Publication
2016
Topic
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams
Author
Lineham, Sean
Thomson, Daniel
Bartlett, Alastair
Bisby, Luke
Hadden, Rory
Publisher
ScienceDirect
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Fire
Mechanical Properties
Keywords
Flexural Loading
Reduced Cross-Section Method
Zero-Strength Layer
Char Depth
Eurocode
Load Bearing Capacity
Deflection
Heat Flux
Language
English
Research Status
Complete
Series
Fire Safety Journal
Summary
Cross-laminated timber (CLT) is a popular construction material for low and medium-rise construction. However an architectural aspiration exists for tall mass timber buildings, and this is currently hindered by knowledge gaps and perceptions regarding the fire behaviour of mass timber buildings. To begin to address some of the important questions regarding the structural response of fire-exposed CLT structures in real fires, this paper presents a series of novel fire tests on CLT beams subjected to sustained flexural loading, coincident with non-standard heating using an incident heat flux sufficient to cause continuous flaming combustion. The load bearing capacities and measured time histories of deflection during heating are compared against predicted responses wherein the experimentally measured char depths are used, along with the Eurocode recommended reduced cross section method and zero-strength layer thickness. The results confirm that the current zero-strength layer value (indeed the zero-strength concept) fails to capture the necessary physics for robust prediction of structural response under non-standard heating. It is recommended that more detailed thermo-mechanical cross-sectional analyses, which allow the structural implications of real fire exposures to be properly considered, should be developed and that the zero-strength layer concept should be discarded in these situations. Such a novel approach, once developed and suitably validated, could offer more realistic and robust structural fire safety design.
Online Access
Free
Resource Link
Less detail

Transferability of 2021 International Building Code Tall Wood Building Provisions to the National Building Code of Canada

https://research.thinkwood.com/en/permalink/catalogue2806
Year of Publication
2021
Topic
Fire
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Other Materials
Application
Hybrid Building Systems
Wood Building Systems
Organization
GHL Consultants Ltd.
Fast + Epp
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Other Materials
Application
Hybrid Building Systems
Wood Building Systems
Topic
Fire
Design and Systems
Seismic
Keywords
National Building Code of Canada
International Building Code
Building Code
Encapsulated Mass Timber Construction
Encapsulation
Exposed Mass Timber Elements
Building Height
Building Area
Fire Resistance Rating
Language
English
Research Status
Complete
Summary
The acceptable solutions in Division B of the anticipated 2020 NBCC limit the height of Groups C and D buildings of sprinklered encapsulated mass timber construction (EMTC) to 12 storeys in building height, and a measured building height of 42m. The recently published 2021 IBC contains provisions to permit buildings of mass timber construction under the IBC Type IV construction, surpassing the NBCC provisions by maximum building height, building area, occupancy groups, and interior exposed timber. The IBC mass timber buildings are permitted to have a building height of maximum 18 storeys, depending on the occupancy group. Within Type IV construction, four subdivisions are described to have varying maximum permissible building height, area, fire resistance rating (FRR), and interior exposed timber. Through a comparison of mass timber provisions of both Codes, relevant research reports, test reports, industry standards, this report documents the consequential and inconsequential differences and developed conclusions on whether the NBCC can adopt the IBC provisions, and with what modifications so that the new provisions may fit the NBCC context.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.