Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Nested Buildings: An Innovative Strategy for the Integrated Seismic and Energy Retrofit of Existing Masonry Buildings with CLT Panels

https://research.thinkwood.com/en/permalink/catalogue2770
Year of Publication
2021
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Valluzzi, Maria Rosa
Saler, Elisa
Vignato, Alberto
Salvalaggio, Matteo
Croatto, Giorgio
Dorigatti, Giorgia
Turrini, Umberto
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Nested Buildings
Seismic Retrofitting
Energy Efficiency
Integrated Intervention
Built Heritage
Masonry Buildings
Panels
Hybrid Structures
Italy
Language
English
Research Status
Complete
Series
Sustainability
Summary
The Italian building heritage is aged and inadequate to the high-performance levels required nowadays in terms of energy efficiency and seismic response. Innovative techniques are generating a strong interest, especially in terms of multi-level approaches and solution optimizations. Among these, Nested Buildings, an integrated intervention approach which preserves the external existing structure and provides a new structural system inside, aim at improving both energy and structural performances. The research presented hereinafter focuses on the strengthening of unreinforced masonry (URM) buildings with cross-laminated timber (CLT) panels, thanks to their lightweight, high stiffness, and good hygrothermal characteristics. The improvement of the hygrothermal performance was investigated through a 2D-model analyzed in the dynamic regime, which showed a general decreasing in the overall thermal transmittance for the retrofitted configurations. Then, to evaluate the seismic behavior of the coupled system, a parametric linear static analysis was implemented for both in-plane and out-of-plane directions, considering various masonry types and connector spacings. Results showed the efficiency of the intervention to improve the in-plane response of walls, thus validating possible applications to existing URM buildings, where local overturning mechanisms are prevented by either sufficient construction details or specific solutions. View Full-Text
Online Access
Free
Resource Link
Less detail

Energy Based Seismic Design of a Multi-Storey Hybrid Building: Timber-Steel Core Walls

https://research.thinkwood.com/en/permalink/catalogue1271
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Goertz, Caleb
Organization
University of British Columbia
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Design and Systems
Keywords
Timber-Steel Hybrid
Core Walls
Multi-Storey
High Seismic Regions
Steel Plates
Equivalent Static Force Procedure
Nonlinear Time History Analysis
Language
English
Research Status
Complete
Summary
This thesis discusses a novel timber-steel core wall system for use in multi-storey buildings in high seismic regions. This hybrid system combines Cross Laminated Timber (CLT) panels with steel plates and connections to provide the required strength and ductility to core walled buildings. The system is first derived from first principles and validated in SAP2000. In order to assess the feasibility of the system it is implemented in the design of a 7-storey building based off an already built concrete benchmark building. The design is carried out following the equivalent static force procedure (ESFP) outlined by the National Building Code of Canada for Vancouver, BC. To evaluate the design bi-directional nonlinear time history analysis (NLTHA) is carried out on the building using a set of 10 ground motions based on a conditional mean spectrum. To improve the applicability of the hybrid system an energy based design methodology is proposed to design the timber-core walled building. The methodology is proposed as it does not rely on empirical formulas and force modification factors to determine the final design of the structure. NLTHA is carried out on the proposed methodology using 10 ground motions to evaluate the suitability of the method and the results are discussed and compared to the ESFP results.
Online Access
Free
Resource Link
Less detail

Developing a Large Span Timber-based Composite Floor System for Highrise Office Buildings

https://research.thinkwood.com/en/permalink/catalogue2549
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Topic
Design and Systems
Keywords
Large Span
Prefabrication
High-Rise
Office Buildings
Tall Timber Buildings
Research Status
In Progress
Notes
Project contact is Frank Lam at the University of British Columbia
Summary
The objective of this project is to develop a large span timber-based composite floor system for the construction of highrise office buildings. This prefabricated floor system could span over 10 m under regular office occupation load, and its use will expedite the construction significantly, converting to multi-million financial savings in a typical 40+ story project, besides the impact on reducing carbon footprint and enhancing living experience.
Less detail

Seismic Design and Analysis of a 20-Storey Demonstration Wood Building

https://research.thinkwood.com/en/permalink/catalogue667
Year of Publication
2015
Topic
Design and Systems
Seismic
Application
Hybrid Building Systems
Author
Chen, Zhiyong
Chui, Ying Hei
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Nonlinear time history analysis
Demonstration Building
Finite Element Model
Wood-Steel
Language
English
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
This paper presents the seismic design and analysis of a 20-storey demonstration wood building, which was conducted as a part of the NEWBuildS tall wood building design project. A hybrid lateral load resisting system was chosen for the building. The system consisted of shear walls and a shear core, both made of structural composite lumber, connected with dowel-type connections and heavy-duty HSK (wood-steel-composite) system. The core and the shear walls were linked with horizontal steel beams at each floor. The wood-based panel-to-panel interface was designed to be the main energy dissipating mechanism of the system. A detailed finite element model of this building was developed and non-linear time history analyses were performed using 10 earthquake motions. The results showed that the seismic response of the 20-storey demonstration building met the various design criteria and the design details are appropriate.
Online Access
Payment Required
Resource Link
Less detail

Timber-Steel Hybrid Beams for Multi-Storey Buildings: Design Criteria, Calculation and Tests

https://research.thinkwood.com/en/permalink/catalogue623
Year of Publication
2014
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Tavoussi, Kamyar
Winter, Wolfgang
Pixner, Tamir
Riola Parada, Felipe
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Keywords
Timber-Steel Hybrid
Multi-Storey
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Timber-steel hybrid elements are structurally reliable, clean and fast to assemble and disassemble, light, ecologic and economic. Design criteria and a calculation model for beams were developed and a series of real scale tests were carried out in order to check their performance. The results proved to be satisfactory and promising for the final objective of building structural frames for different types of multi-story buildings.
Online Access
Free
Resource Link
Less detail

Feasibility Study of Using Cross-Laminated Timber Core for the UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1262
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Author
Moudgil, Manu
Organization
University of British Columbia
Year of Publication
2017
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Concrete Core
Seismic Loading
National Building Code of Canada
Mass Timber Core
Language
English
Research Status
Complete
Summary
Mass-timber has gained popularity in the construction of mid-rise buildings in the last decade. The innovation of constructing tall buildings with mass-timber can be seen in the student residence at Brock Commons built in 2016 at the University of British Columbia. It is the world’s tallest timber hybrid building with 18 stories and 53 meters’ height above the ground level. The building has 17 stories of mass-timber superstructure resting on a concrete podium with two concrete cores that act as a lateral force resisting system for earthquake and wind forces. The mass-timber superstructure of 17 stories took ten weeks whereas the concrete cores were built in fourteen weeks. There could have been a substantial reduction in the project timeline leading to cost savings, if mass-timber was used for the cores. The motivation for concrete cores was driven by the sole purpose of easier approval procedure. The objective of this thesis was to evaluate the possibility to design the Brock Commons building using mass-timber cores. First, the procedure for the approvals for tall timber buildings by understanding the code compliance for Brock Commons is discussed. Then, the actual building with concrete cores is modeled, with the model being calibrated with the results from the structural engineers of record. These concrete cores are then replaced by the same configuration using Cross Laminated Timber (CLT) cores to investigate the structural feasibility of Brock Commons with a mass-timber core. The results presented herein show that Brock Commons with CLT core having the same dimensions and configuration is unstable under seismic loading for Vancouver, BC, as specified by National Building of Canada 2015. However, when the configuration and thickness of CLT cores are changed, the structure can meet the seismic performance criteria as per the code.
Online Access
Free
Resource Link
Less detail

Lateral Load-Resisting System Using Mass Timber Panel for High-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1221
Year of Publication
2017
Topic
Seismic
Wind
Design and Systems
Material
LSL (Laminated Strand Lumber)
Application
Shear Walls
Hybrid Building Systems
Author
Chen, Zhiyong
Chui, Ying-hei
Publisher
Frontiers Media
Year of Publication
2017
Country of Publication
Switzerland
Format
Journal Article
Material
LSL (Laminated Strand Lumber)
Application
Shear Walls
Hybrid Building Systems
Topic
Seismic
Wind
Design and Systems
Keywords
Lateral Load Resisting System
High-Rise
Dowel-Type Connections
FE model
Linear Static Analysis
Non-linear Dynamic Analysis
Timber-Steel Hybrid
Language
English
Research Status
Complete
Series
Frontiers in Built Environment
Summary
As global interest in using engineered wood products in tall buildings intensifies due to the “green” credential of wood, it is expected that more tall wood buildings will be designed and constructed in the coming years. This, however, brings new challenges to the designers. One of the major challenges is how to design lateral load-resisting systems (LLRSs) with sufficient stiffness, strength, and ductility to resist strong wind and earthquakes. In this study, an LLRS using mass timber panel on a stiff podium was developed for high-rise buildings in accordance with capacity-based design principle. The LLRS comprises eight shear walls with a core in the center of the building, which was constructed with structural composite lumber and connected with dowel-type connections and wood–steel composite system. The main energy dissipating mechanism of the LLRS was detailed to be located at the panel-to-panel interface. This LLRS was implemented in the design of a hypothetical 20-storey building. A finite element (FE) model of the building was developed using general-purpose FE software, ABAQUS. The wind-induced and seismic response of the building model was investigated by performing linear static and non-linear dynamic analyses. The analysis results showed that the proposed LLRS using mass timber was suitable for high-rise buildings. This study provided a valuable insight into the structural performance of LLRS constructed with mass timber panels as a viable option to steel and concrete for high-rise buildings.
Online Access
Free
Resource Link
Less detail

Advancement of Timber Panels as Structural Elements in Composite Floor Systems of Timber-Steel Hybrid Structures

https://research.thinkwood.com/en/permalink/catalogue2785
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Floors
Hybrid Building Systems
Organization
Auburn University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Floors
Hybrid Building Systems
Topic
Design and Systems
Keywords
Timber-Steel Hybrid
Research Status
In Progress
Summary
Auburn University’s (AU) School of Forestry and Wildlife Sciences (SFWS) in Alabama actively works to increase awareness of the benefits of CLT along with hybrid systems for more widespread adoption in multiple building segments. AU’s two-year project proposal outlines a plan that will establish a preliminary design for the usage of a timber-steel composite system, utilizing CLT or laminated veneer lumber (LVL), as an option that will replace reinforced concrete slabs to improve the structural performance for buildings six stories or more.
Less detail

Monitoring-Based Performance Assessment of An Innovative Timber-Hybrid Building

https://research.thinkwood.com/en/permalink/catalogue2207
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Hybrid Building Systems
Author
Claude Leyder
Organization
ETH Zurich
Year of Publication
2019
Country of Publication
Switzerland
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Hybrid Building Systems
Topic
Mechanical Properties
Keywords
Long-term
Life Cycle
Modal Vibration Tests
Language
English
Research Status
Complete
Series
IBK Bericht
Online Access
Free
Resource Link
Less detail

Dynamic Analysis of Large-Scale Wooden Structures with a Core of Reinforced Concrete and Considering Wooden Diaphragm Stiffness : Part1. Background and Analysis Models

https://research.thinkwood.com/en/permalink/catalogue876
Year of Publication
2013
Topic
Design and Systems
Application
Hybrid Building Systems
Author
Asakawa, Takeshi
Kano, Daisuke
Organization
Architectural Institute of Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Application
Hybrid Building Systems
Topic
Design and Systems
Keywords
Mid-Rise
Timber-Concrete Hybrid
Language
Japanese
Research Status
Complete
Summary
The purpose of this paper is to outline the foundation for the research by presenting the underlying design philosophy and resulting design framework that will serve as the basis for the emerging design methodology. In this way, context will be provided for the technical papers to follow and the eventual design methodology at the project’s conclusion. A companion paper, “Seismic Design Methodology for Precast Concrete Diaphragms—Part 2: Research Program,” describes the specific analytical and experimental activities taking place in the research.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.