Skip header and navigation

10 records – page 1 of 1.

Market Survey of Timber Prefabricated Envelopes for New and Existing Buildings

https://research.thinkwood.com/en/permalink/catalogue2198
Year of Publication
2019
Topic
Design and Systems
Application
Building Envelope

Illustrated Guide for Designing Wood-Frame Buildings in Alberta to Meet the National Energy Code of Canada for Buildings

https://research.thinkwood.com/en/permalink/catalogue1917
Year of Publication
2019
Topic
Design and Systems
Application
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Application
Building Envelope
Topic
Design and Systems
Keywords
Building Codes
Energy Efficiency
Mid-Rise
Thermal
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

VaproShield Mass Timber Building Enclosure Design Guide

https://research.thinkwood.com/en/permalink/catalogue2347
Year of Publication
2019
Topic
Moisture
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Author
Brown, Bailey
Finch, Graham
DiPlacido, Adam
Organization
RDH Building Science
Year of Publication
2019
Country of Publication
United States
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Moisture
Design and Systems
Keywords
Mass Timber
Air Barrier Membrane
Roof Underlayments
Enclosure Design
Water-Resistive Barrier
Language
English
Research Status
Complete
Summary
Mass timber and CLT construction offers many advantages, such as enhanced modularity, reduced construction schedules, improved thermal performance, and material sustainability. However, mass timber’s propensity to absorb moisture from the environment and the relative vapor impermeability of CLT panels introduces unique challenges when incorporated with the building enclosure. These challenges should be considered during design and construction phases to ensure long-term performance. The VaproShield Mass Timber Building Enclosure Design Guideline covers the best practices for the design and construction of high-performance CLT wall and roof assemblies. RDH is the principal author and editor of the guide and within its capacity, we do not purport to endorse any specific material or technical matter within this guide.
Online Access
Free
Resource Link
Less detail

Hygrothermal Characterization and Modeling of Cross-Laminated Timber in the Building Envelope

https://research.thinkwood.com/en/permalink/catalogue2562
Year of Publication
2020
Topic
Moisture
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Author
Kordziel, Steven
Glass, Samuel
Boardman, Charles
Munson, Robert
Zelinka, Samuel
Pei, Shiling
Tabares-Velasco, Paulo
Year of Publication
2020
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Moisture
Design and Systems
Keywords
Building Envelope
Hygrothermal Modeling
Moisture Performance
Water Uptake
Hygric Redistribution
Language
English
Research Status
Complete
Series
Building and Environment
Summary
Cross-laminated timber (CLT) is a type of mass timber panel used in floor, wall, and roof assemblies. An important consideration in design and construction of timber buildings is moisture durability. This study characterized the hygrothermal performance of CLT panels with laboratory measurements at multiple scales, field measurements, and modeling. The CLT panels consisted of five layers, four with spruce-pine-fir lumber and one with Douglas-fir lumber. Laboratory characterization involved measurements on small specimens that included material from only one or two layers and large specimens that included all five layers of the CLT panel. Water absorption was measured with panel specimens partially immersed in water, and a new method was developed where panels were exposed to ponded water on the top surface. This configuration gave a higher rate of water uptake than the partial immersion test. The rate of drying was much slower when the wetted surface was covered with an impermeable membrane. Measured hygrothermal properties were implemented in a one-dimensional transient hygrothermal model. Simulation of water uptake indicated that vapor diffusion had a significant contribution in parallel with liquid transport. A simple approximation for liquid transport coefficients, with identical coefficients for suction and redistribution, was adequate for simulating panel-scale wetting and drying. Finally, hygrothermal simulation of a CLT roof assembly that had been monitored in a companion field study showed agreement in most cases within the sensor uncertainty. Although the hygrothermal properties are particular to the wood species and CLT panels investigated here, the modeling approach is broadly applicable.
Online Access
Free
Resource Link
Less detail

Developing an Application for Mass Plywood Panels in Seismic and Energy Wall Retrofit

https://research.thinkwood.com/en/permalink/catalogue2568
Topic
Energy Performance
Seismic
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Organization
University of Oregon
Oregon State University
TallWood Design Institute
Country of Publication
United States
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Topic
Energy Performance
Seismic
Keywords
Retrofit
Assembly
Prefabrication
Research Status
In Progress
Notes
Project contact is Mark Fretz at the University of Oregon
Summary
University of Oregon and Oregon State University are collaborating through TallWood Design Institute (TDI) to upgrade aging, energy inefficient and seismically unprepared multifamily housing by developing a mass plywood (MPP) retrofit panel assembly that employs digital workflows and small diameter logs (down to 5") to create an economically viable energy/seismic retrofit model for the West Coast and beyond. The project has broad potential to support forested federal land management agencies and private forestry by proving a new market for small diameter logs.
Less detail

Wood Innovation Research Laboratory (WIRL) Building Research Report

https://research.thinkwood.com/en/permalink/catalogue2577
Year of Publication
2020
Topic
Design and Systems
Energy Performance
Material
Glulam (Glue-Laminated Timber)
Application
Building Envelope
Organization
University of Northern British Columbia
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Building Envelope
Topic
Design and Systems
Energy Performance
Keywords
Performance
Sensors
Testing Methods
Energy Consumption
Thermal Performance
Language
English
Research Status
Complete
Summary
The purpose of this research is to investigate what differences, if any, exist between the modeled energy consumption and building envelope performance of the Wood Innovation Research Laboratory (WIRL) building following eight months of in-situ data collection. The WIRL building was completed in July of 2018 by the University of Northern British Columbia (UNBC) and is located in Prince George, British Columbia. Built in partnership with the Province of British Columbia, the building was designed to meet Passive House standards, a building certification system that requires the building to have low energy input requirements due to high levels of thermal insulation and minimal air leakage. To ensure the building achieves the established energy use targets set forth under the Passive House certification system, a computer model of the proposed building design must be completed prior to the start of construction using the Passive House Planning Package (PHPP) software. Inputs to the model include envelope design, mechanical energy use, building location and airtightness value. Key outputs included the predicted annual heating demand (kWh/m2a), total primary energy demand (kWh/m2a), and air tightness of the building envelope (ACH@50Pa). Based on the final building design model and test results achieved following completion, the WIRL building was deemed to have met all Passive House requirements and certification was achieved. To complete on-going data collection of the in-situ performance of the WIRL building, temperature and humidity sensors were installed in two of the exterior wall assemblies and the building’s floor. In addition, gas and electrical energy use meters were installed to monitor the building’s energy consumption. The installation of all equipment was made possible by Forest Innovation Investment through their 2018/2019 Wood First Program.
Online Access
Free
Resource Link
Less detail

Tall Wood Building Enclosures – A Race To the Top

https://research.thinkwood.com/en/permalink/catalogue2346
Year of Publication
2017
Topic
Design and Systems
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Building Envelope
Author
Hubbs, Brian
Finch, Graham
Year of Publication
2017
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Building Envelope
Topic
Design and Systems
Site Construction Management
Keywords
Prefabrication
Building Enclosure
Façade
Curtain Wall
Durability
Construction Time
Language
English
Conference
Canadian Conference on Building Science and Technology
Research Status
Complete
Summary
On tall wood buildings, mass timber elements including CLT, NLT, glulam, and other engineered components absolutely need to be protected from excessive wetting during construction. This requirement precludes the use of many conventional cladding systems unless the building is fully hoarded during construction. The building enclosure and façade of UBC Tallwood House consists of an innovative prefabricated steel stud rainscreen curtain-wall assembly that is pre-insulated, pre-clad, and has factory installed windows. Design of connections and air and water sealing of panel joints and interfaces was carefully considered given the tall wood structure they were designed to protect. While steel studs were utilized in the panelized structure, feasible curtain-wall designs were also developed and prototyped for wood-framing, CLT, and precast concrete as part of the project. Looking ahead, there will continue to be innovation in design and construction of fast and durable facades for taller wood buildings. New prefabricated panel designs incorporating CLT panels and connection technologies from unitized curtainwall systems are already being developed for the “next tallest” wood buildings in North America.
Online Access
Free
Resource Link
Less detail

Evolution of the Building Envelope in Modern Wood Construction

https://research.thinkwood.com/en/permalink/catalogue1799
Year of Publication
2017
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Keywords
Energy Efficiency
Building Envelope
Tall Wood
Wood Infill Walls
Podium Structures
Articulated Buildings
Language
English
Research Status
Complete
Summary
This report provides an overview of major changes occurred in the recent decade to design and construction of the building envelope of wood and wood-hybrid construction. It also covers some new or unique considerations required to improve building envelope performance, due to evolutions of structural systems, architectural design, energy efficiency requirements, or use of new materials. It primarily aims to help practicioners better understand wood-based building envelope systems to improve design and construction practices. The information provided should also be useful to the wood industry to better understand the demands for wood products in the market place. Gaps in research are identified and summarized at the end of this report.
Online Access
Free
Resource Link
Less detail

Characterizing and Quantifying Environmental and Economic Benefits of Cross Laminated Timber Buildings across the U.S.

https://research.thinkwood.com/en/permalink/catalogue2564
Topic
Cost
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Colorado School of Mines
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Cost
Energy Performance
Keywords
Numerical Analysis
Whole Building Energy Model
Building Envelope
Monitoring
Commercial Buildings
Research Status
In Progress
Notes
Project contact is Paulo Tabares at the Colorado School of Mines
Summary
Cross Laminated Timber (CLT) is a mass timber material that has the potential to expand the wood building market in the U.S. However, new sustainable building technologies need extensive field and numerical validation quantifying environmental and economic benefits of using CLT as a sustainable building material so it can be broadly adopted in the building community. These benefits will also be projected nationwide across the United States once state-of-the-art software is validated and will include showcasing and documenting synergies between multiple technologies in the building envelope and heating, ventilation and air conditioning (HVAC) systems. However, there are no such studies for CLT. The objective of this project is to quantify and showcase environmental and economic benefits of CLT as a sustainable building material in actual (and simulated) commercial buildings across the entire United States by doing: (1) on-site monitoring of at least four CLT buildings, (2) whole building energy model validation, (3) optimization of the performance and design for CLT buildings and (4) comparison with traditional building envelopes. This knowledge gap needs to be filled to position CLT on competitive grounds with steel and concrete and is the motivation for this study.
Less detail

Enable the Use of Mass Timber Products for Non-Residential Buildings in High Velocity Hurricane Zone

https://research.thinkwood.com/en/permalink/catalogue2630
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Clemson University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Wind
Keywords
High Velocity Hurricane Zone
Wind Load
Debris Impact Testing
Non-Residential
Commercial Buildings
Research Status
In Progress
Notes
Project contact is Weichiang Pang at Clemson University
Summary
The overall goal of this project is to enable the use of cross laminated timber (CLT) to construct commercial and other non-residential buildings in High Velocity Hurricane Zone (HVHZ). The 1992 Hurricane Andrew exposed the shortcomings of existing building codes. Recognizing this shortcomings, the Florida Building Code (FBC) incorporated new enhanced provisions which specifically require that the entire building envelope, including the wall and roof systems, must be impact resistant in HVHZ. Currently, CLT is not in the database of a list of building envelope products that comply with the HVHZ standard. The specific objectives of this project are (1) to qualify PRG-320 compliance CLT panels for HVHZ standard by conducting FBC debris impact and wind pressure cyclic tests; (2) to conduct education and outreach sessions to promote the use of CLT in HVHZ, and (3) to identify possible construction projects that may utilize CLT as the building envelope and promote the use of CLT in those projects. The test results generated in this project will be used specifically to gain HVHZ building code approval.
Less detail

10 records – page 1 of 1.