Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Fire Testing for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1828
Year of Publication
2017
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Beams
Columns
Organization
SWRI
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Beams
Columns
Topic
Fire
Keywords
Fire Endurance Tests
Connections
Assembly
Fabrication
Thermocouples
Beam Column Connection
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
A. Fire Test Results Summary B. Test 1a (Test 1): Beam-Exterior Column Connection Report C. Test 1a (Test 2): Beam-Exterior Column Connection Report D. Test 1a (Test 3): Beam-Exterior Column Connection Report E. Test 1a (Test 4): Beam-Exterior Column Connection Report F. Test 1b (Test 1): CLT Deck to Beam Report G. Test 1b (Test 2): CLT Deck to Beam Report H. Test 1b (Test 3): CLT Deck to Beam Report I. Test 1c: Penetrations Fire Resistance Rating Report (TBD) J. Test 1d: Wall Fire Resistance Rating Report
Online Access
Free
Resource Link
Less detail

Structural Testing for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1829
Year of Publication
2017
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Walls
Wood Building Systems
Organization
Oregon State University
Portland State University
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Mechanical Properties
Keywords
Crushing Test
In-Plane Shear Test
Beam-Column Connection
Panels
Earthquake
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
A. Structural Test Results Summary B. Test 1, 2, 3: 1. CLT Crushing Test Report 2. Bare CLT Wall Panel Test Report 3. CLT In-Plane Shear Wall Test Report C. Glulam Beam-Column Connection Test Report
Online Access
Free
Resource Link
Less detail

Acoustic Testing and Wood Supply for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1830
Year of Publication
2017
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Walls
Roofs
Wood Building Systems
Organization
ARUP
StructureCraft
InterTek
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Walls
Roofs
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Sound Transmission
Impact Noise Transmission
Concrete Topping
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
A. Shop Drawings and Details for Tests B. Sound and Impact Test Results Summary C. Test 1: Sound and Impact Transmission Test - CLT D. Test 2: Sound and Impact Transmission Test - Concrete Topping E. Test 3a: Sound and Impact Transmission Test - Marmoleum F. Test 3b: Sound and Impact Transmission Test - Marmoleum G. Test 4: Sound and Impact Transmission Test - Carpet H. Test 5a: Sound and Impact Transmission Test - Luxury Vinyl Plank I. Test 5b: Sound and Impact Transmission Test - Luxury Vinyl Plank J. Test 6: Sound and Impact Transmission Test - Mechanical Roof
Online Access
Free
Resource Link
Less detail

Basis of Design - Performance-Based Design and Structural CD Drawings for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1827
Year of Publication
2017
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
KPFF Consulting Engineers
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Structural
Wind Load
Sustainability
Reliability
Seismic
Earthquake Resistance
Serviceability
Design
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Notes
Document includes 100% CD construction drawings
Summary
This document outlines the basis of design for the performance-based design and nonlinear response history analysis of the Framework Project in Portland, OR. Performance-based design is pursued for this project because the proposed lateral force-resisting system, consisting of post-tensioned rocking cross-laminated timber (CLT) walls is not included in ASCE/SEI 7-10 Table 12.2-1.
Online Access
Free
Resource Link
Less detail

Wood Cityscapes: Mass Timber Office Building

https://research.thinkwood.com/en/permalink/catalogue2300
Year of Publication
2016
Topic
Design and Systems
Cost
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hovhannisyan, Mariam
Publisher
University of Washington
Year of Publication
2016
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Cost
Environmental Impact
Keywords
Office Buildings
Mid-Rise
Cost
Schedule
Greenhouse gas emissions
Prototype
Language
English
Research Status
Complete
Summary
Most office building construction relies on steel and concrete for mid-high rise office building applications. The primary goal of this thesis is to understand the implications of CLT and mass timber construction systems for mid-high rise office buildings in Seattle by developing a prototypical office building located on a specific site. This research thesis will focus on comparing this prototypical mass timber office building design to the same/similar design using industry standard construction materials for Seattle. The criteria for comparison will include code, cost, schedule and greenhouse gas emissions.
Online Access
Free
Resource Link
Less detail

Monitored Indoor Environmental Quality of a Mass Timber Office Building: A Case Study

https://research.thinkwood.com/en/permalink/catalogue2103
Year of Publication
2019
Topic
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Ongoing Field Evaluation of Douglas-fir Cross-Laminated Timber in a Ground Proximity Protected Test in Mississippi

https://research.thinkwood.com/en/permalink/catalogue1958
Year of Publication
2018
Topic
Serviceability
Material
CLT (Cross-Laminated Timber)
Author
Mankowski, Mark
Shelton, Thomas
Kirker, Grant
Morrell, Jeffrey
Year of Publication
2018
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Serviceability
Keywords
Douglas-Fir
Treated Wood
Termites
Language
English
Conference
American Wood Protection Association
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Framework - A Tall Re-Centering Mass Timber Building in the United States

https://research.thinkwood.com/en/permalink/catalogue713
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zimmerman, Reid
McDonnell, Eric
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
US
Mixed-Use Building
Tall Wood
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
Framework is a 12-story, 140ft (43m) tall mixed use building to be constructed almost entirely out of mass timber, including both the gravity and lateral forceresisting systems, in a region of high seismicity in the United States (Portland, Oregon). Utilizing performance-based seismic design and nonlinear response history analysis, the structure’s rocking/re-centering cross laminated timber walls were designed for enhanced, beyond-code-level seismic objectives. These enhanced objectives were targeted through more stringent criteria on deformation-controlled elements, design for replacement of energy dissipaters, limitations on residual drift, and a project-specific testing program completed at Oregon State University and Portland State University. The momentum behind construction of mass timber buildings in the United States provides an opportunity to promote resilient/low-damage design which is consistent with the sustainability goals of many of these projects. This also follows naturally from the inherent rocking/re-centering behavior of mass timber walls. Furthermore, extending rocking mass timber walls to taller buildings is feasible; however, it requires an additional level of thoughtful design, explicit analysis and testing, and careful detailing, including consideration of the effective shear modulus of CLT, wall shear amplification due to higher mode effects, deformation compatibility of gravity connections, and CLT diaphragms.
Online Access
Free
Resource Link
Less detail

Prototype Mass Timber Office Building Models: Material Quantities and Preliminary Life Cycle Assessment: Internal Report

https://research.thinkwood.com/en/permalink/catalogue2547
Year of Publication
2018
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Author
Ganguly, Indroneil
Eastin, Ivan
Simonen, Kathrina
Year of Publication
2018
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Design and Systems
Environmental Impact
Keywords
Mid-Rise
Mass Timber
Prototype
Model
LCA
Life-Cycle Assessment
Language
English
Research Status
Complete
Summary
The goal of this work was to develop material quantity estimates of a typical mid-rise office building in the Pacific Northwest and to deliver the results to the Forestry Research Team in the University of Washington (UW) College of the Environment School of Environmental and Forest Sciences. The Forestry Research Team will then use these results to develop regionally specific life cycle inventory data to support the greater study funded by the 2015 McIntire-Stennis Research Grant, which is “to assist small and medium-sized wood products companies and Native American tribal enterprises to understand and adapt to changing market conditions” (http://depts.washington.edu/sefsifr/2015-mcintire-stennis-grantwinners/).
Online Access
Free
Resource Link
Less detail

Wind-Induced Motion Of 'Treet' - A 14-Storey Timber Residential Building in Norway

https://research.thinkwood.com/en/permalink/catalogue459
Year of Publication
2014
Topic
Acoustics and Vibration
Wind
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Bjertnæs, Magne
Arne Malo, Kjell
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Keywords
Multi-Storey
Comfort Properties
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This paper deals with the comfort properties in a planned 14-storey timber apartment building in Bergen, Norway. The building will be one of the tallest timber buildings in the world. The building consists of load-carrying glulam trusses with two intermediate strengthened levels. The truss carries prefabricated building modules. Herein, the evaluation with respect to dynamic behaviour of the building is described with emphasis on the horizontal acceleration due to wind forces. "Treet" is a relatively high building with low structural weight. Its natural frequencies lie in the domain where wind can cause annoying motions or nausea. The stiffness and mass properties for glulam and concrete are well known, but poorly described for complex, complete building modules. To get better knowledge of dynamic behaviour of the prefabricated building modules, testing was needed. Based on the structural design and the module testing a FEM analysis model was generated in order to calculate the building's natural frequencies and modal mass. These parameters were used to determine the windinduced accelerations of "Treet".
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.