Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Fire Resistance of Timber Framed Floor with Isolated Ceiling Assembly

https://research.thinkwood.com/en/permalink/catalogue685
Year of Publication
2014
Topic
Acoustics and Vibration
Fire
Material
Glulam (Glue-Laminated Timber)
Application
Floors
Ceilings
Author
Park, Joo-Saeng
Lee, Sang-Joon
Yeo, In-Hwan
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Floors
Ceilings
Topic
Acoustics and Vibration
Fire
Keywords
Heavy Impact Sound
Fire Resistance
Sound Insulation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Fire resistance test was performed for a floor assembly, of which stiffness was reinforced by shortening the span of floor joists by adding glulam beam in the middle of the original span, and which an additional ceiling component was installed apart from floor part. These factors are expected to show good insulation performance of timber framed floor against heavy impact sound. From full scale fire test, it is conclude that the designed and manufactured floor achieved 1 hour of fire resistance rating.
Online Access
Free
Resource Link
Less detail

Fire Resistance of Unprotected Cross-Laminated Timber (CLT) Floor Assemblies Produced in the USA

https://research.thinkwood.com/en/permalink/catalogue2507
Year of Publication
2019
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems

Fire-Resistance Test Report of E1 Stress Grade Cross-Laminated Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue356
Year of Publication
2013
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Fire
Keywords
National Building Code of Canada
Fire Resistance
Type X Gypsum Board
Language
English
Research Status
Complete
Summary
A series of 3 cross-laminated timber (CLT) fire-resistance tests were conducted in accordance with ULC S101 standard as required in the National Building Code of Canada. The first two tests were 3-ply wall assemblies which were 105 mm thick, one unprotected and the other protected with an intumescent coating, FLAMEBLOC® GS 200, on the exposed surface. The walls were loaded to 295 kN/m (20 250 lb./ft.). The unprotected assembly failed structurally after 32 minutes, and the protected assembly failed after 25 minutes. The third test consisted of a 175 mm thick 5-ply CLT floor assembly which used wood I-joists, resilient channels, insulation and 15.9 mm ( in.) Type X gypsum board protection. A uniform load of 5.07 kPa (106 lb./ft²) was applied. The floor assembly failed after 138 min due to integrity.
Online Access
Free
Resource Link
Less detail

Fire Resistance of Assemblies in Solid Wood Construction

https://research.thinkwood.com/en/permalink/catalogue2261
Topic
Fire
Organization
Université Laval
Country of Publication
Canada
Topic
Fire
Keywords
Fasteners
Thermo-Mechanical Behaviour
Research Status
In Progress
Notes
Contact: Christian Dagenais, Université Laval
Summary
With the arrival of innovative fasteners (e.g. self-tapping screws), assembly principles have greatly changed and now resemble a metal framework. Although a significant amount of information is available in the literature, it often indicates short-term flammability resistance (± 30 min), which is largely insufficient for buildings that need to provide a fire resistance rating of at least 2 hours. The objective is to carry out a literature review to understand the factors influencing the fire performance of assemblies in wood construction. A modeling of thermomechanical behavior and a simplified analytical approach should be developed. Testing from an intermediate furnace is likely to be required to validate model assumptions.
Less detail

Fire Resistance of Assemblies in Massive Timber Construction

https://research.thinkwood.com/en/permalink/catalogue2671
Topic
Fire
Application
Wood Building Systems
Organization
Université Laval
Country of Publication
Canada
Application
Wood Building Systems
Topic
Fire
Keywords
Thermo-Mechanical Behaviour
Analytical Approach
Fire Resistance
Research Status
In Progress
Notes
Project contact is Christian Dagenais at Université Laval
Summary
The structural elements of a building must provide fire resistance in order to prevent collapse and to provide an escape route for occupants. The basic philosophy is that components that support elements with a degree of fire resistance must also offer the same degree of resistance. It is also assumed that the connections between these elements provide at least the same degree as the supported elements. Traditionally, heavy timber construction used ingenious construction principles and assemblies made of cast iron. With the advent of innovative fasteners (eg self-tapping screws), the principles of assembly have changed greatly and are now similar to a metal frame. So, several studies have been carried out in recent years in order to increase knowledge of the fire behavior of these assemblies (Audebert et al., 2012, Dhima 1999, Frangi et al. 2009, Peng 2010, Ohene 2014, Ali et al. 2014 , Moss et al. 2008). Although a significant amount of information is available in the literature, it often indicates short-term flammability resistance (± 30 min), which is largely insufficient for buildings having to provide a degree of fire resistance of at least 2 hours. The objective is to carry out a literature review in order to fully understand the factors influencing the fire performance of assemblies in wood construction. A model of thermomechanical behavior and a simplified analytical approach would have to be developed.
Resource Link
Less detail

Preliminary CLT Fire Resistance Testing Report

https://research.thinkwood.com/en/permalink/catalogue377
Year of Publication
2012
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
FPInnovations
Year of Publication
2012
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Full Scale
Fire Resistance
Type X Gypsum Board
Thermocouples
Language
English
Research Status
Complete
Summary
FPInnovations is involved in a large research project regarding CLT construction. One objective of this research is the creation of a design methodology for calculating the fire-resistance of CLT assemblies/construction. This methodology will foster the design of fire-safe buildings of wood or hybrid construction. In order to establish such calculation methods, a series of experimental tests has been undertaken. A total of eight full-scale CLT fire resistance tests have been conducted at the NRC fire laboratory where the panels were subject to the standard ULC S101 [1] fire exposure. The series consisted of three wall and five floor tests. Each test was unique using panels with a different number of plies and varying thicknesses. Some of the assemblies were protected using CGC Sheetrock® FireCode® Core Type X gypsum board while others were left unprotected.
Online Access
Free
Resource Link
Less detail

Predicting the Fire Resistance of Cross-Laminated Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue1865
Year of Publication
2012
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Acoustic Testing of CLT and Glulam Floor Assemblies

https://research.thinkwood.com/en/permalink/catalogue1863
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Sabourin, Ivan
Organization
National Research Council of Canada
Publisher
Regupol America
Year of Publication
2016
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Transmission Loss
Impact Sound Transmission
Impact Sound Pressure Level
Language
English
Research Status
Complete
Series
Nordic Engineered Wood Report
Online Access
Free
Resource Link
Less detail

Calculating the Fire Resistance of Wood Members and Assemblies: Technical Report No. 10

https://research.thinkwood.com/en/permalink/catalogue2492
Year of Publication
2020
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Columns
Beams
Floors
Walls
Wood Building Systems
Decking

Midply Shear Wall Fire Resistance Testing

https://research.thinkwood.com/en/permalink/catalogue2541
Topic
Fire
Seismic
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Organization
FPInnovations
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Fire
Seismic
Research Status
In Progress
Notes
Project contact is Lindsay Ranger at FPInnovations
Summary
To ensure their safe implementation and their broad acceptance, this project will establish fire resistance ratings for midply shear walls. This will help to support the acceptance of mid-rise wood-frame residential and non-residential buildings.
Less detail

10 records – page 1 of 1.