Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Seismic Design of Timber Buildings with a Direct Displacement-Based Design Method

https://research.thinkwood.com/en/permalink/catalogue1904
Year of Publication
2013
Topic
Seismic
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Frames
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Editor
Cruz, Paulo J.S.
Publisher
CRC Press
Year of Publication
2013
Country of Publication
United States
Format
Book/Guide
Material
Light Frame (Lumber+Panels)
Application
Frames
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
Performance-Based Seismic Design
Direct Displacement-Based Design
Displacement
Damping
Language
English
Research Status
Complete
Series
Structures and Architecture: Concepts, Applications and Challenges
ISBN
978-1-4822-2461-0
Summary
Modern seismic design procedures are widely represented by the concept of Performance-Based Seismic Design (PBSD). Direct Displacement-Based Design (DDBD) procedure for PBSD of buildings is considered a very promising method which uses displacement as an input design parameter. The DDBD procedure first codified by Priestley requires an a priori estimate of the design displacement and the associated equivalent viscous damping of the structure, at design performance levels. In this paper, design parameters for the ultimate limit state have been developed for a common construction system for timber buildings. Such parameters are defined as a function of mechanical and geometrical connection configurations.
Online Access
Free
Resource Link
Less detail

Direct Displacement Based Design of A Novel Hybrid Structure: Steel Moment-Resisting Frames with Cross Laminated Timber Infill Walls

https://research.thinkwood.com/en/permalink/catalogue15
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Bezabeh, Matiyas
Tesfamariam, Solomon
Stiemer, Siegfried
Popovski, Marjan
Karacabeyli, Erol
Publisher
Earthquake Engineering Research Institute
Year of Publication
2015
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Timber-Steel Hybrid
Panels
Nonlinear Time History Analysis
Language
English
Research Status
Complete
Series
Earthquake Spectra
Summary
This study proposes an iterative direct displacement based design method for a novel steel-timber hybrid structure. The hybrid structure incorporates Cross Laminated Timber (CLT) shear panels as an infill in steel moment resisting frames. The proposed design method is applied to design 3-, 6-, and 9-story hybrid buildings with three bays and CLT infilled middle bay. Nonlinear time history analysis, using twenty earthquake ground motion records, is carried out to validate the performance of the design method. The results indicate that the proposed method effectively controls the displacements due to seismic excitation of the hybrid structure.
Online Access
Free
Resource Link
Less detail

Lateral Behaviour and Direct Displacement Based Design of a Novel Hybrid Structure: Cross Laminated Timber Infilled Steel Moment Resisting Frames

https://research.thinkwood.com/en/permalink/catalogue175
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Frames
Author
Bezabeh, Matiyas
Organization
University of British Columbia
Year of Publication
2014
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Frames
Topic
Design and Systems
Seismic
Keywords
Displacement
Frames
Lateral Loads
Model
Timber-Steel Hybrid
Language
English
Research Status
Complete
Summary
Recently, an innovative hybrid structure has been developed as an alternative lateral-load resisting system at The University of British Columbia. The hybrid structure incorporates Cross Laminated Timber (CLT) shear panels as an infill in steel moment resisting frames (SMRFs). In order to increase the applicability of the proposed system, in this thesis, a direct displacement based design methodology has been developed and analytically validated. Initially, a nonlinear time history analysis (NLTHA) was carried out to study the lateral behaviour of the proposed hybrid structure. For this purpose, a total of 162 different hybrid buildings were modeled and analyzed in OpenSees by using twenty earthquake ground motions (2% probability exceedance in 50 years). Post-earthquake performance indicators (Maximum Interstory Drift (MISD) and Residual Interstory Drift (RISD)) were obtained from the analyses. To assist the post-seismic safety assessment of the hybrid buildings, surrogate models for MISD and RISD were developed using Response Surface Methodology and Artificial Neural Network (ANN). By using the ANN surrogate models as fitness functions for the Genetic Algorithm, optimal modeling parameters of the hybrid system were obtained. Secondly, to represent the energy dissipative capacity of the hybrid system, an equivalent viscous damping (EVD) equation was developed. To formulate the EVD equation, 243 single-storey single-bay CLT infilled SMRF models were developed and subjected to monotonic static and semi-static cyclic analysis. The EVD of each model was calculated from the hysteretic responses based on Jacobsen’s area based approach and later calibrated using NLTHA. Finally, an iterative direct displacement based design method was developed for the proposed hybrid structure. A detailed description of the proposed methodology is presented with a numerical example. In order to verify the proposed method, hybrid buildings with 3-, 6-, and 9- storey heights were designed. A calibrated EVD-ductility relationship was used to obtain the energy dissipation of the equivalent SDOF system for all case study buildings. Nonlinear time history analysis using twenty ground motion records was used to validate the performance of the proposed design methodology. The results indicate that the proposed design method effectively controls the displacements resulting from the seismic excitation of the hybrid structure.
Online Access
Free
Resource Link
Less detail

Direct Displacement-Based Seismic Design of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1899
Year of Publication
2012
Topic
Seismic
Connections
Application
Frames
Walls
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Publisher
Sociedade Portuguesa de Engenharia Sismica (SPES)
Year of Publication
2012
Country of Publication
Portugal
Format
Conference Paper
Application
Frames
Walls
Wood Building Systems
Topic
Seismic
Connections
Keywords
Direct Displacement-Based Design
Equivalent Viscous Damping
Dowel Type Fastener
Language
English
Conference
15WCEE
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
ISBN
978-1-63439-651-6
Online Access
Free
Resource Link
Less detail

Design of Floor Diaphragms in Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue294
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Author
Moroder, Daniel
Smith, Tobias
Pampanin, Stefano
Palermo, Alessandro
Buchanan, Andrew
Year of Publication
2015
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Topic
Design and Systems
Seismic
Keywords
Diaphragms
Multi-Storey
Commercial
Lateral Loads
Equivalent Truss Method
Lateral Load Resisting System
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 10-12, 2015, Rotorua, New Zealand
Summary
This paper discusses the design of timber diaphragms, in response to the growing interest in multi-storey commercial timber structures, and the lack of guidance or regulations regarding the seismic design of timber diaphragms. Proper performance of floor diaphragms is required to transfer all lateral loads to the vertical systems that resist them, but design for earthquake loads can be more complex than design for wind loads. This paper confirms that the seismic design of a diaphragm is intimately linked to the seismic design of the whole building. Diaphragm failure, even if restricted to a limited diaphragm portion, can compromise the behaviour of the whole building. It is therefore necessary to design and detail diaphragms for all possible load paths and to evaluate their influence on the load distribution within the rest of the structure. It is strongly recommended that timber diaphragms be designed as elastic elements, by applying dynamic amplification and overstrength factors derived from the lateral load resisting system. This paper shows that some current design recommendations for plywood sheathing on light timber framing can be applied to massive wood diaphragms, but for more complex floor geometries an equivalent truss method is suggested. Diaphragm flexibility and displacement incompatibilities between the floor diaphragms and the lateral resisting systems also need to be accounted for.
Online Access
Free
Resource Link
Less detail

State-of-the-Art Review of Displacement-Based Seismic Design of Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2123
Year of Publication
2018
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Loss, Christiano
Tannert, Thomas
Tesfamariam, Solomon
Publisher
Elsevier
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Performance Based Design
Direct Displacement-Based Design
Hybrid Structures
N2 Method
Design Procedures
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper discusses the state-of-the-art of displacement-based seismic design (DBD) methods and their applications to timber buildings. First, an in-depth review of the DBD methods is presented, focusing in particular on the direct, modal and N2 methods. Then, paper presents DBD application on a wide range of construction systems, including both traditional light-frame structures as well as the emerging sector of tall and hybrid timber buildings. Finally, potentials of using these DBD methods for seismic design as well as possible implications of including DBD within the next generation of building codes are discussed.
Online Access
Free
Resource Link
Less detail

Seismic Design of Floor Diaphragms in Post-Tensioned Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue507
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Floors
Author
Moroder, Daniel
Sarti, Francesco
Palermo, Alessandro
Pampanin, Stefano
Buchanan, Andrew
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Floors
Topic
Design and Systems
Seismic
Keywords
Post-Tensioned
Frame Elongation
Rocking
Diaphragm
Lateral Load Resisting System
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Seismic damage to floor diaphragms because of displacement incompatibilities are a point of concern in many structures. This paper studies the behaviour of timber diaphragms subjected to frame elongation and rocking of walls in post-tensioned timber buildings. Experimental tests with special connection details between floor panels and between the diaphragm and the lateral load resisting system show that floor damage in severe earthquakes can be avoided by designing for flexibility and proper connection detailing
Online Access
Free
Resource Link
Less detail

Displacement-Based Seismic Design of Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1891
Year of Publication
2011
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Other Materials
Application
Wood Building Systems
Walls
Floors
Beams
Columns
Frames

Floor Diaphragms in Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue71
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Floors
Author
Moroder, Daniel
Organization
University of Canterbury
Year of Publication
2016
Country of Publication
New Zealand
Format
Thesis
Material
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Design and Systems
Seismic
Keywords
Diaphragms
Lateral Loads
Multi-Storey
Equivalent Truss Method
Pres-Lam
Language
English
Research Status
Complete
Summary
This thesis studies the behaviour of diaphragms in multi-storey timber buildings by providing methods for the estimation of the diaphragm force demand, developing an Equivalent Truss Method for the analysis of timber diaphragms, and experimentally investigating the effects of displacement incompatibilities between the diaphragm and the lateral load resisting system and developing methods for their mitigation. Although shortcomings in the estimation of force demand, and in the analysis and design of concrete floor diaphragms have already been partially addressed by other researchers, the behaviour of diaphragms in modern multi-storey timber buildings in general, and in low damage Pres-Lam buildings (consisting of post-tensioned timber members) in particular is still unknown. The analysis of light timber framing and massive timber diaphragms can be successfully analysed with an Equivalent Truss Method, which is calibrated by accounting for the panel shear and fastener stiffnesses. Finally, displacement incompatibilities in frame and wall structures can be accommodated by the flexibilities of the diaphragm panels and relative connections. A design recommendations chapter summarizes all findings and allows a designer to estimate diaphragm forces, to analyse the force path in timber diaphragms and to detail the connections to allow for displacement incompatibilities in multi-storey timber buildings.
Online Access
Free
Resource Link
Less detail

Proposal for a Standardized Design and Modeling Procedure of Tall CLT Buildings

https://research.thinkwood.com/en/permalink/catalogue1219
Year of Publication
2016
Topic
Design and Systems
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Polastri, Andrea
Pozza, Luca
Publisher
University of Kragujevac
Year of Publication
2016
Country of Publication
Montenegro
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Connections
Keywords
Stiffness
Numerical Modeling
Language
English
Research Status
Complete
Series
International Journal for Quality Research
ISSN
1800-7473
Summary
A crucial issue in the design of a mid-rise Cross Laminated Timber (CLT) building under horizontal seismic action, is the definition of the principal elastic vibration period of an entire superstructure. Such vibration period depends on the mass distribution and on the global stiffness of the buildings. In a CLT structure the global stiffness of the buildings is highly sensitive to deformability of the connection elements. Consequently for a precise control of the vibration period of the building it is crucial to define the stiffness of each connections used to assemble a superstructure. A design procedure suitable for a reliable definition of the connection stiffness is proposed referring to code provisions and experimental tests. Discussion addresses primary issues associated with the usage of proposed procedure for numerical modeling of case study tall CLT buildings is reported.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.