Skip header and navigation

10 records – page 1 of 1.

Building Envelope Summary: Hygrothermal Assessment of Systems for Mid-Rise Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue250
Year of Publication
2014
Topic
Design and Systems
Fire
Moisture
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Abdulghani, Khaled
Cornick, Steve
Di Lenardo, Bruno
Ganapathy, Gnanamurugan
Lacasse, Michael
Maref, Wahid
Moore, Travis
Mukhopadhyaya, Phalguni
Nicholls, Mike
Saber, Hamed
Swinton, Michael
van Reenen, David
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Moisture
Keywords
National Building Code of Canada
Mid-Rise
Building Envelopes
Language
English
Research Status
Complete
Summary
The role of the building envelope research team in this project was to assess whether midrise wood-frame (LWF) and cross-laminated timber (CLT) building envelope solutions developed by the fire research team to meet the fire provisions of the National Building Code (NBC) 2010 Part 3 Fire Protection, would also meet the NBC Part 5 Environmental Separation requirements relating to the protection of the building envelope from excessive moisture and water accumulation. As well, these wood-based mid-rise envelope solutions were to be assessed for their ability to meet Part 3 Building Envelope of the National Energy Code for Buildings (NECB) 2011. Requirements relating to heat, air, moisture, and precipitation (HAMP) control by the building envelope are included in Part 5 Environmental Separation of the NBC 2010. Part 5 addresses all building types and occupancies referred to in Part 3, but unlike requirements for fire protection, this section of the code was written more recently and is generic, including requirements that are more objective-oriented rather than prescriptive requirements pegged to specific constructions systems. The investigated methodologies developed and adapted for this study took those code characteristics into account.
Online Access
Free
Resource Link
Less detail

Acoustics Summary: Sound Insulation in Mid-Rise Wood Building

https://research.thinkwood.com/en/permalink/catalogue750
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Schoenwald, Stefan
Zeitler, Berndt
King, Frances
Sabourin, Ivan
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Mid-Rise
Sound Insulation
Impact Sound Transmission
Airborne Sound Transmission
Language
English
Research Status
Complete
Summary
This report summarizes the acoustics research component regarding sound insulation of elements and systems for the research project on mid-rise and larger wood buildings. The summary outlines the background, main research considerations, research conducted and major outcomes. Further details of the design and the results can found in the appendix of Client Report A1-100035-02.1 [1]. The goal of the acoustics research components was to develop design solutions for mid-rise wood and wood-hybrid buildings that comply both with the current National Building Code of Canada (NBCC) 2010 [2] requirements for direct sound insulation and with the anticipated requirements for flanking sound transmission in the proposed, 2015 version of the NBCC. In addition, the design solutions were to provide better impact sound insulation while still achieving code compliance for all other disciplines (interdependencies) as identified in the final report of the scoping study conducted in FY 2010/2011 [3]
Online Access
Free
Resource Link
Less detail

Fire Endurance of Cross-Laminated Timber Floor and Wall Assemblies for Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue1094
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Su, Joseph
Roy-Poirier, Audrey
Leroux, Patrice
Lafrance, Pier-Simon
Gratton, Karl
Gibbs, Eric
Berzins, Robert
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Fire
Keywords
Tall Wood
Full Scale
Fiberglass Wool
Encapsulated
Type X Gypsum Board
Fire Endurance Tests
Language
English
Research Status
Complete
Summary
Standard fire endurance tests were performed on a full-scale floor assembly and a full-scale wall assembly constructed with cross-laminated timber (CLT) as the main structural element. The full-scale floor assembly consisted of CLT panels encapsulated with fiberglass wool and a single layer of 15.9 mm thick Type X gypsum board on the exposed side and with two layers of 12.7 mm thick cement board on the unexposed side. The full-scale wall assembly was constructed from CLT panels encapsulated with two layers of 15.9 mm thick Type X gypsum board on both faces. Nine thermocouples were installed on the unexposed face of both assemblies to monitor the temperature rise throughout the test and nine deflection gauges were installed on each assembly to monitor deformations. The superimposed load applied on the floor assembly was 9.4 kN/m² and the load imposed on the wall assembly was 449 kN/m. The fire endurance period of the full-scale floor assembly was 128 minutes and that of the full-scale wall assembly 219 minutes. Both the full-scale floor assembly and the full-scale wall assembly failed structurally afterwards under the applied loading. No hose stream tests were carried out on the fullscale floor and wall assemblies.
Online Access
Free
Resource Link
Less detail

Fire Safety Challenges of Tall Wood Buildings – Phase 2: Task 2 & 3 – Cross Laminated Timber Compartment Fire Tests

https://research.thinkwood.com/en/permalink/catalogue1214
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Su, Joseph
Lafrance, Pier-Simon
Hoehler, Matthew
Bundy, Matthew
Organization
National Research Council of Canada
Publisher
Fire Protection Research Foundation
Year of Publication
2018
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Compartment Fire Test
Tall Wood
North America
Type X Gypsum Board
Ventilation
Language
English
Research Status
Complete
Summary
Recent architectural trends include the design and construction of increasingly tall buildings with structural components comprised of engineered wood referred to by names including; cross laminated timber (CLT), laminated veneer lumber (LVL), or glued laminated timber (Glulam). These buildings are cited for their advantages in sustainability resulting from the use of wood as a renewable construction material. Previous research has shown that timber elements contribute to the fuel load in buildings and can increase the initial fire growth rate – potentially overwhelming fire protection system and creating more severe conditions for occupants, emergency responders, and nearby properties. The overarching goal of this project Fire Safety Challenges of Tall Wood Buildings Phase 2 (involving five tasks) is to quantify the contribution of CLT building elements (wall and/or floor-ceiling assemblies) in compartment fires and provide data to allow comparison of the performance of CLT systems against other building systems commonly used in tall buildings.
Online Access
Free
Resource Link
Less detail

Solution for Mid-Rise Wood Construction: Full-Scale Standard Fire Resistance Tests of Wall Assemblies for Use in Lower Storeys of Mid-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue346
Year of Publication
2014
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Author
Lafrance, Pier-Simon
Berzins, Robert
Leroux, Patrice
Su, Joseph
Lougheed, Gary
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Topic
Design and Systems
Fire
Keywords
Mid-Rise
Full Scale
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. The effectiveness of the encapsulation approach in limiting the involvement of wood structural materials in fires was demonstrated in this research project through bench-, intermediate- and full-scale fire experiments. These results for encapsulated lightweight wood-frame (LWF) systems and encapsulated cross-laminated timber (CLT) systems are documented in a series of reports [3, 4, 5, 6]. In addition to developing the encapsulation approach for protecting the wood structural materials to meet the above code intent, research was undertaken to examine standard fire resistance of encapsulated wood structural assemblies for use in mid-rise wood/timber buildings. One of the major differences between structural LWF assemblies used in mid-rise wood buildings (5-6 storeys) and low-rise wood buildings (= 4 stories) is the wall assemblies for the lower storeys. For mid-rise wood buildings, loadbearing wall assemblies on the lower storeys have to be designed to resist higher axial loads due to the self-weight of the upper storeys, which often result in the need for larger-size stud members and/or a greater number of studs, and higher lateral loads in case of seismic events or wind loads, which often requires the use of wood shear panels within the wall assembly. These wall assemblies very often will need to meet standard fire resistance requirements, and therefore, information regarding their standard fire-resistance ratings should be developed. This report documents the results of fullscale furnace tests conducted to develop standard fire-resistance ratings of encapsulated LWF assemblies for use in mid-rise applications.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Ignition of Selected Wood Building Materials

https://research.thinkwood.com/en/permalink/catalogue350
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Bijloos, Martin
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Mid-Rise
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. A key parameter in the use of encapsulation materials to protect wood structural elements is the ignition temperature of wood. In this report, a brief overview of wood ignition is provided. In addition, the results of limited cone calorimeter testing to determine the ignition characteristics of OSB and torrefied wood are discussed. The ignition temperature of plywood used as a substrate for cone calorimeter tests with encapsulation materials is also provided.
Online Access
Free
Resource Link
Less detail

Full Scale Exterior Wall Test on Nordic Cross-Laminated Timber System

https://research.thinkwood.com/en/permalink/catalogue2
Year of Publication
2015
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gibbs, Eric
Su, Joseph
Organization
National Research Council of Canada
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Fire
Keywords
Full Scale
Type X Gypsum Board
Exterior Wall
Language
English
Research Status
Complete
Summary
This report describes a full-scale exterior wall fire test conducted on December 16, 2014 on a Nordic cross-laminated timber (CLT) wall system. The test was conducted in accordance with CAN/ULC-S134-13, Standard Method of Fire Test of Exterior Wall Assemblies. The test was conducted using the exterior wall fire test facility located in the Burn Hall of the NRC Fire Laboratory, Mississippi Mills, Ontario. The CLT wall system was assembled to represent a continuous solid wood wall covered by a water barrier membrane and insulation. The pilot burners were lit prior to the commencement of the test. Gas flow to the burners was manually adjusted to follow the prescribed heat input required by the standard.
Online Access
Free
Resource Link
Less detail

Mid-Rise Wood Constructions: Hygrothermal Modelling and Analysis

https://research.thinkwood.com/en/permalink/catalogue6
Year of Publication
2014
Topic
Design and Systems
Moisture
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Abdulghani, Khaled
Swinton, Michael
Cornick, Steve
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Design and Systems
Moisture
Keywords
Damage
Load Bearing
Moisture Content
Simulation
Hygrothermal
Language
English
Research Status
Complete
Summary
In general for both wall constructions simulation results tended to point to the exterior of the stud in the Lightweight Wood Frame (LWF) and Cross Laminated Timber (CLT) construction cases to be the area most at risk, specifically toward the exterior surface of the stud. Generally the total Moisture Content (MC) of the stud decreased to an acceptable level within the simulation period however the exterior surface appeared to remain at relatively high of moisture content level for significant periods of time. The presence of wood strapping covering the exterior face of the stud seemed to exacerbate the situation. If a support system for the cladding can be designed that does not rely on wood strapping or covers a minimum area of the stud the performance of this critical area could be improved. If the initial moisture content of the wood materials could be reduced before close up the performance would also be improved for all locations that did not show an increase in moisture content and the RHT index in the second year, at least with respect to computer modelling. This work however was not in scope of the work.
Online Access
Free
Resource Link
Less detail

Mid-Rise Wood: Characterization of Hygrothermal Properties

https://research.thinkwood.com/en/permalink/catalogue49
Year of Publication
2014
Topic
Design and Systems
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Mukhopadhyaya, Phalguni
Bundalo-Perc, Sladana
van Reenen, David
Wang, Jasmine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Moisture
Keywords
Envelope
Exterior Walls
Hygrothermal
Mid-Rise
Language
English
Research Status
Complete
Summary
To evaluate the building envelope performance of the generic exterior wall assemblies developed for use in mid-rise wood buildings, hygrothermal properties of materials used in the assemblies are needed as input data for hygrothermal modelling. Hygrothermal properties were developed for fire retardant treated plywood, regular gypsum sheathing, spray polyurethane foam and cross-laminated timber. This report documents results of the hygrothermal property determinations. The objective of this part of the research project was to generate a set of reliable and representative data on hygrothermal properties of a number of selected building materials as mentioned below. 1. D-Blaze Treated Plywood 2. Dricon Treated Plywood 3. Gypsum Sheathing 4. Closed Cell Spray Polyurethane Foam Insulation (Purple in Colour)
Online Access
Free
Resource Link
Less detail

Benchmarking of the Advanced Hygrothermal Model HygIRC – Large Scale Drying Experiment of the Mid-Rise Wood Frame Assembly

https://research.thinkwood.com/en/permalink/catalogue349
Year of Publication
2014
Topic
Design and Systems
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Maref, Wahid
Saber, Hamed
Ganapathy, Gnanamurugan
Abdulghani, Khaled
Nicholls, Mike
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Keywords
Drying Rate
Full Scale
Hygrothermal
Mid-Rise
Moisture Content
Construction Phase
Language
English
Research Status
Complete
Summary
Recent research in the field of assessment of hygrothermal response has focused on either laboratory experimentation or modelling, but less work has been reported in which both aspects are combined. Such type of studies can potentially offer useful information regarding the benchmarking of models and related methods to assess hygrothermal performance of wall assemblies. This report documents the experimental results of a benchmark experiment that was designed to allow benchmarking of stud drying predicted by NRC’s an advanced hygrothermal computer model called hygIRC, when subjected to nominally steady-state environmental conditions. hygIRC uses hygrothermal properties of materials derived from tests on small-scale specimens undertaken in the laboratory. The drying rates of wall assembly featuring wet studs that result from moisture accumulated during the framing stage of a 5 or 6 storey building. The drying rate of those studs was assessed in an experiment undertaken in a controlled laboratory setting. The results were subsequently used to help benchmark hygIRC reported under separate cover.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.