Skip header and navigation

10 records – page 1 of 1.

Seismic Design of Timber Buildings with a Direct Displacement-Based Design Method

https://research.thinkwood.com/en/permalink/catalogue1904
Year of Publication
2013
Topic
Seismic
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Frames
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Editor
Cruz, Paulo J.S.
Publisher
CRC Press
Year of Publication
2013
Country of Publication
United States
Format
Book/Guide
Material
Light Frame (Lumber+Panels)
Application
Frames
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
Performance-Based Seismic Design
Direct Displacement-Based Design
Displacement
Damping
Language
English
Research Status
Complete
Series
Structures and Architecture: Concepts, Applications and Challenges
ISBN
978-1-4822-2461-0
Summary
Modern seismic design procedures are widely represented by the concept of Performance-Based Seismic Design (PBSD). Direct Displacement-Based Design (DDBD) procedure for PBSD of buildings is considered a very promising method which uses displacement as an input design parameter. The DDBD procedure first codified by Priestley requires an a priori estimate of the design displacement and the associated equivalent viscous damping of the structure, at design performance levels. In this paper, design parameters for the ultimate limit state have been developed for a common construction system for timber buildings. Such parameters are defined as a function of mechanical and geometrical connection configurations.
Online Access
Free
Resource Link
Less detail

Lateral Behaviour and Direct Displacement Based Design of a Novel Hybrid Structure: Cross Laminated Timber Infilled Steel Moment Resisting Frames

https://research.thinkwood.com/en/permalink/catalogue175
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Frames
Author
Bezabeh, Matiyas
Organization
University of British Columbia
Year of Publication
2014
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Frames
Topic
Design and Systems
Seismic
Keywords
Displacement
Frames
Lateral Loads
Model
Timber-Steel Hybrid
Language
English
Research Status
Complete
Summary
Recently, an innovative hybrid structure has been developed as an alternative lateral-load resisting system at The University of British Columbia. The hybrid structure incorporates Cross Laminated Timber (CLT) shear panels as an infill in steel moment resisting frames (SMRFs). In order to increase the applicability of the proposed system, in this thesis, a direct displacement based design methodology has been developed and analytically validated. Initially, a nonlinear time history analysis (NLTHA) was carried out to study the lateral behaviour of the proposed hybrid structure. For this purpose, a total of 162 different hybrid buildings were modeled and analyzed in OpenSees by using twenty earthquake ground motions (2% probability exceedance in 50 years). Post-earthquake performance indicators (Maximum Interstory Drift (MISD) and Residual Interstory Drift (RISD)) were obtained from the analyses. To assist the post-seismic safety assessment of the hybrid buildings, surrogate models for MISD and RISD were developed using Response Surface Methodology and Artificial Neural Network (ANN). By using the ANN surrogate models as fitness functions for the Genetic Algorithm, optimal modeling parameters of the hybrid system were obtained. Secondly, to represent the energy dissipative capacity of the hybrid system, an equivalent viscous damping (EVD) equation was developed. To formulate the EVD equation, 243 single-storey single-bay CLT infilled SMRF models were developed and subjected to monotonic static and semi-static cyclic analysis. The EVD of each model was calculated from the hysteretic responses based on Jacobsen’s area based approach and later calibrated using NLTHA. Finally, an iterative direct displacement based design method was developed for the proposed hybrid structure. A detailed description of the proposed methodology is presented with a numerical example. In order to verify the proposed method, hybrid buildings with 3-, 6-, and 9- storey heights were designed. A calibrated EVD-ductility relationship was used to obtain the energy dissipation of the equivalent SDOF system for all case study buildings. Nonlinear time history analysis using twenty ground motion records was used to validate the performance of the proposed design methodology. The results indicate that the proposed design method effectively controls the displacements resulting from the seismic excitation of the hybrid structure.
Online Access
Free
Resource Link
Less detail

Direct Displacement-Based Seismic Design of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1899
Year of Publication
2012
Topic
Seismic
Connections
Application
Frames
Walls
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Publisher
Sociedade Portuguesa de Engenharia Sismica (SPES)
Year of Publication
2012
Country of Publication
Portugal
Format
Conference Paper
Application
Frames
Walls
Wood Building Systems
Topic
Seismic
Connections
Keywords
Direct Displacement-Based Design
Equivalent Viscous Damping
Dowel Type Fastener
Language
English
Conference
15WCEE
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
ISBN
978-1-63439-651-6
Online Access
Free
Resource Link
Less detail

Displacement-Based Seismic Design of Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1891
Year of Publication
2011
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Other Materials
Application
Wood Building Systems
Walls
Floors
Beams
Columns
Frames

Feasibility Study of a Wood-Concrete Hybrid Super Tall Building and Optimization of its Wind-Induced Behaviour

https://research.thinkwood.com/en/permalink/catalogue1902
Year of Publication
2018
Topic
Design and Systems
Wind
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Frames
Walls
Shafts and Chases

A 'Hybrid' Multi-Storey Building - Meeting Design Criteria in a Cost-Effective Way

https://research.thinkwood.com/en/permalink/catalogue1845
Year of Publication
2018
Topic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Steel-Timber Composite
Timber-Concrete Composite
Other Materials
Application
Walls
Floors
Frames

Shaking Table Testing of a Multi-Storey Post-Tensioned Glulam Building: Preliminary Experimental Results

https://research.thinkwood.com/en/permalink/catalogue1854
Year of Publication
2018
Topic
Seismic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Beams
Columns

Design of a "Mass-Timber" Building with Different Seismic Bracing Technologies

https://research.thinkwood.com/en/permalink/catalogue1900
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Frames
Author
Fini, Giulio
Pozza, Luca
Loss, Cristiano
Tannert, Thomas
Publisher
ANIDIS Earthquake Engineering in Italy
Year of Publication
2017
Country of Publication
Italy
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Frames
Topic
Seismic
Keywords
Timber Frames
Prefabrication
Seismic Performance
Language
English
Conference
17th ANIDIS Conference
Research Status
Complete
Notes
September 17-21, 2017, Pistoia, Italy
ISBN
978-886741-8541
ISSN
2532-120X
Online Access
Free
Resource Link
Less detail

Higher Mode Effects in Multi-Storey Timber Buildings with Varying Diaphragm Flexibility

https://research.thinkwood.com/en/permalink/catalogue1480
Year of Publication
2017
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Frames
Walls
Author
Moroder, Daniel
Sarti, Francesco
Pampanin, Stefano
Smith, Tobias
Buchanan, Andrew
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Frames
Walls
Topic
Seismic
Mechanical Properties
Keywords
Nonlinear Time History Analysis
Higher Mode Effects
Stiffness
Diaphragms
Inter-Story Drift
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With the increasing acceptance and popularity of multi-storey timber buildings up to 10 storeys and beyond, the influence of higher mode effects and diaphragm stiffness cannot be overlooked in design. Due to the lower stiffness of timber lateral load resisting systems compared with traditional construction materials, the effect of higher modes on the global dynamic behaviour can be more critical. The presence of flexible timber diaphragms creates additional vibration modes, which have the potential to interact with each other, increasing the seismic demand on the whole structure. This paper uses a parametric non-linear time-history analysis on a series of timber frame and wall structures with varying diaphragm flexibility to study their dynamic behaviour and to determine diaphragm forces. The analyses results showed that although higher mode effects play a significant role in the structural dynamic response, this increased demand can be successfully predicted with methods available in literature. The parametric analyses showed that the diaphragm flexibility did not significantly increase the shear and moment demand; however, stiff wall structures with flexible diaphragms experienced large inter-storey drifts measured at diaphragm midspan compared with the drift of the wall alone. As expected, the diaphragm forces observed from the time-history analyses were significantly higher than the forces derived from an equivalent static analysis, leading to a potentially unsafe design. The paper presents a simplified approach for evaluating these amplified peak inertial diaphragm forces.
Online Access
Free
Resource Link
Less detail

Development of CLT Panels Bond-in Method for Seismic Retrofitting of RC Frame Structure

https://research.thinkwood.com/en/permalink/catalogue1860
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Frames
Author
Haba, Ryota
Kitamori, Akihisa
Mori, Takuro
Fukuhara, Takeshi
Kurihara, Takaaki
Isoda, Hiroshi
Publisher
J-STAGE
Year of Publication
2016
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Frames
Topic
Seismic
Design and Systems
Keywords
Retrofit
Earthquake
Panels
Adhesive
Bonding
Language
Japanese
Research Status
Complete
Series
Journal of Structural and Construction Engineering: Transactions of AIJ
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.