Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Wood Design Manual 2017

https://research.thinkwood.com/en/permalink/catalogue2160
Year of Publication
2017
Topic
Design and Systems
Connections
Fire
Seismic
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Light Frame (Lumber+Panels)
DLT (Dowel Laminated Timber)
Application
Beams
Bridges and Spans
Columns
Floors
Ceilings
Arches
Shear Walls
Trusses
Walls

Design and Dimensioning of a Complex Timber-Glass Hybrid Structure: The IFAM Pedestrian Bridge

https://research.thinkwood.com/en/permalink/catalogue1797
Year of Publication
2016
Topic
Design and Systems
Material
Timber-Glass Composite
Application
Bridges and Spans
Hybrid Building Systems
Wood Building Systems
Author
Vallée, Till
Grunwald, Cordula
Milchert, Lena
Fecht, Simon
Publisher
Springer International Publishing
Year of Publication
2016
Country of Publication
Switzerland
Format
Journal Article
Material
Timber-Glass Composite
Application
Bridges and Spans
Hybrid Building Systems
Wood Building Systems
Topic
Design and Systems
Keywords
Joint
Bonding
Standards
Codes
Adhesive Connection
Language
English
Research Status
Complete
Series
Glass Structures & Engineering
ISSN
2363-5142
Online Access
Free
Resource Link
Less detail

Design Concept for a Greened Timber Truss Bridge in City Area

https://research.thinkwood.com/en/permalink/catalogue2392
Year of Publication
2020
Topic
Design and Systems
Environmental Impact
Application
Bridges and Spans
Author
Kromoser, Benjamin
Ritt, Martin
Spitzer, Alexandra
Stangl, Rosemarie
Idam, Friedrich
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Application
Bridges and Spans
Topic
Design and Systems
Environmental Impact
Keywords
Wooden Trusses
Timber Bridges
Timber Engineering
Greened Structures
Vertical Green
Sustainable Structural Engineering
Digital Design
Parametric Design
Automated Construction
Resource-Efficient Structural Engineering
Language
English
Research Status
Complete
Series
Sustainability
Summary
Properly designed wooden truss bridges are environmentally compatible construction systems. The sharp decline in the erection of such structures in the past decades can be led back to the great effort needed for design and production. Digital parametric design and automated prefabrication approaches allow for a substantial improvement of the efficiency of design and manufacturing processes. Thus, if combined with a constructive wood protection following traditional building techniques, highly efficient sustainable structures are the result. The present paper describes the conceptual design for a wooden truss bridge drawn up for the overpass of a two-lane street crossing the university campus of one of Vienna’s main universities. The concept includes the greening of the structure as a shading design element. After an introduction, two Austrian traditional wooden bridges representing a good and a bad example for constructive wood protection are presented, and a state of the art of the production of timber trusses and greening building structures is given as well. The third part consists of the explanation of the boundary conditions for the project. Subsequently, in the fourth part, the conceptual design, including the design concept, the digital parametric design, the optimization, and the automated prefabrication concept, as well as the potential greening concept are discussed, followed by a summary and outlook on future research.
Online Access
Free
Resource Link
Less detail

Designing Pedestrian Stress-Laminated Timber Bridges for Multiple Spans: Parameters Related to Dynamic Response

https://research.thinkwood.com/en/permalink/catalogue2576
Year of Publication
2019
Topic
Design and Systems
Application
Bridges and Spans

Flexural Strengthening of Composite Bridge Glued Laminated Timber Beams-Concrete Plate Using CFRP Layers

https://research.thinkwood.com/en/permalink/catalogue2587
Year of Publication
2020
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Mujiman, M
Igustiany, F
Hakiki, R
Publisher
IOP Publishing Ltd
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Design and Systems
Keywords
CFRP
Carbon Fiber Reinforced Polymer
Flexural Strength
Stiffness
Ductility
Reinforcement
Language
English
Research Status
Complete
Series
IOP Conference Series: Materials Science and Engineering
Summary
The timber bridge design although economical, often has difficulty producing enough rigidity so that a solution is needed to solve it. The use of CFRP (Carbon Fiber Reinforced Polymer) as a reinforcement of structural elements if properly designed and implemented can produce an effective and efficient composite structure. The experimental study aims to analyse the strength, stiffness and ductility of flexural strengthening composite bridge glued laminated timber beams-concrete plates using CFRP layers. The dimensions of the composite glued laminated timber beams 100/180 mm and concrete plate 75/300 mm with a length of 2,480 mm. The number of specimens is 3 composite glued laminated timber beams-concrete plate consisting of 1 test beam without CFRP reinforcement, 1 test beam with one layer CFRP reinforcement, and 1 test beam with three layer CFRP reinforcement. Experimental testing of flexural loads is done with two load points where each load is placed at 1/3 span length. The test results show that the strength of composite laminated timber beams glued - concrete plates BN; BL-1; BL-2 in a row 81.32; 82.82; 82.69 kN/mm; stiffness in a row 7.51; 8.22; 6.32 kN/mm and successive ductility of 16.67; 28.83; 20.21.
Online Access
Free
Resource Link
Less detail

Petawawa Research Forest Centennial Bridge

https://research.thinkwood.com/en/permalink/catalogue1919
Year of Publication
2019
Topic
Design and Systems
Application
Bridges and Spans
Author
Koo, Kenneth
Prevost, Glen
Pineau, John
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Application
Bridges and Spans
Topic
Design and Systems
Keywords
Road Bridge
Construction
Culvert System
Engineered Wood Product (EWP)
Language
English
Research Status
Complete
Summary
The Petawawa Research Forest (PRF) was established in 1918 and is the oldest research forest in Canada. It is located along Highway 17, east of Chalk River, Ontario, and is part of Garrison Petawawa under the jurisdiction of the Department of National Defence. By special agreement, it is managed by the Canadian Wood Fibre Centre, under the Canadian Forest Service, Natural Resources Canada. The research undertaken at the PRF influences forest policy, industry, silvicultural practices, and private forest management practices across the country. Operational commercial harvests also occur at the PRF. Meridian Road is an access road at the PRF and leads to research, forest management, and recreational sites. A multi-cell culvert system at Young’s Creek recently failed (bottom left), and the crossing needed large-scale maintenance to allow the continued movement of logging trucks, vehicles, and research teams. The culvert failure negatively impacted water flow and habitat. To rectify these issues, a modern, single-lane engineered wood product (EWP) bridge, named Centennial Bridge (bottom right), was installed and built by Corington Engineering Inc., of Renfrew, Ontario. The experience at the PRF is of interest to sustainable forest licence (SFL) holders (and municipalities) looking to gain more knowledge about the construction and design of EWP access road bridges. The goal of this case study was to highlight the main construction and design details of Centennial Bridge and draw some comparisons to conventional steel-logging road bridges.
Online Access
Free
Resource Link
Less detail

Glulam Timber Bridges for Local Roads

https://research.thinkwood.com/en/permalink/catalogue2131
Year of Publication
2017
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Carnahan, Zachary
Publisher
South Dakota State University
Year of Publication
2017
Country of Publication
United States
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Design and Systems
Keywords
Bridge Decks
Performance Based Design
Model
Full-Scale Glulam Girder Bridge Test
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Ontario Wood Bridge Reference Guide

https://research.thinkwood.com/en/permalink/catalogue2132
Year of Publication
2017
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans

Timber-Concrete-Composites Increasing the Use of Timber in Construction

https://research.thinkwood.com/en/permalink/catalogue615
Year of Publication
2015
Topic
Design and Systems
Material
Timber-Concrete Composite
Application
Bridges and Spans
Floors
Author
Dias, Alfredo
Skinner, Jonathan
Crews, Keith
Tannert, Thomas
Publisher
Springer Berlin Heidelberg
Year of Publication
2015
Country of Publication
Germany
Format
Journal Article
Material
Timber-Concrete Composite
Application
Bridges and Spans
Floors
Topic
Design and Systems
Keywords
North America
Europe
Oceania
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
Summary
Timber-concrete-composite (TCC) systems have increasingly been used in recent decades. One of the main reasons for this development is related to applications that could not be built with timber alone, but that become possible with a TCC solution. This paper first gives a short overview of the use of TCCs, the relevant regulatory framework, and then presents several case studies of TCC applications. The perspectives and examples are from Europe, North America and Oceania to give a worldwide perspective from regions where TCC systems are being used. The structural systems presented in the case studies include bridges and floors in public buildings. For each project, details of the application are presented and the way each one contributed to extend the use of timber in construction.
Online Access
Free
Resource Link
Less detail

Steien Network Arch Bridge

https://research.thinkwood.com/en/permalink/catalogue2128
Year of Publication
2013
Topic
Design and Systems
Application
Bridges and Spans

10 records – page 1 of 1.