Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Comparison of Theoretical and Laboratory Out-of-Plane Shear Stiffness Values of Cross Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2177
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Niederwestberg, Jan
Zhou, Jianhui
Chui, Ying-hei
Publisher
MDPI
Year of Publication
2018
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Shear Behaviour
Out Of Plane
Shear Stiffness
Timoshenko Theory of Bending
Shear Modulus
Language
English
Research Status
Complete
Series
Buildings
ISSN
2075-5309
Online Access
Free
Resource Link
Less detail

Strength and Stiffness of Cross Laminated Timber at In-Plane Beam Loading

https://research.thinkwood.com/en/permalink/catalogue2233
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams

Influence of Openings on the Shear Strength and Stiffness of Cross Laminated Timber (CLT) Panels

https://research.thinkwood.com/en/permalink/catalogue2710
Year of Publication
2020
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Shear Walls
Author
Aljuhmani, Ahmad
Ogasawawra, A.
Atsuzawa, E.
Alwashali, Hamood
Shegay, A. V.
Tafheem, Zasiah
Maeda, Masaki
Year of Publication
2020
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Shear Walls
Topic
Mechanical Properties
Keywords
Diagonal Compression Test
Openings
Lateral Strength
In-Plane Shear Stiffness
Panels
Language
English
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Summary
In the last decade, cross laminated timber (CLT) has been receiving increasing attention as a promising construction material for multi-storey structures in areas of high seismicity. In Japan, application of CLT in building construction is still relatively new; however, there is increasing interest in CLT from researchers as well as construction companies. Furthermore, the Japanese government is providing construction cost subsidies for new CLT structures as it is a carbon neutral and sustainable material. The high shear and compressive strength of CLT makes it a good candidate for use as shear walls in mid-rise buildings. One important aspect of CLT walls, and one that is presently poorly understood, is the influence of openings on the shear carrying capacity. Openings are often necessary in CLT panels either in form of windows, doors, lift shaft openings or installation of building services. Concerning this aspect, the code regulations in Japan are relatively strict, such that if openings exceeded certain prescribed limits, the entire CLT panel is considered as a non-structural element, and its contribution to lateral strength is totally ignored. Furthermore, as the maximum opening size is usually governed by edge distance constraints, the size of openings that designers can use is inevitably limited by the standard sizes supplied by the manufacturers. As a result, designers are obligated to adopt very small opening size. This is thought to be a very conservative approach. The main purpose of this paper is to experimentally evaluate the influence of openings on seismic capacity; strength and stiffness reduction, as well as failure mode with changing opening size and opening aspect ratio. In addition, check the validity of the Japanese code regulations with regards to openings in CLT panels. In this study, six 5-layer CLT panels containing different openings were tested. The parameters considered include the size and layout of the opening. The panels were specifically designed with openings that would render them ineffective in resisting lateral loads according to the Japanese standard. However, in addition to the six panels, one panel without openings and one panel with openings that meet the Japanese standard was designed. All the CLT panels were tested in uniaxial diagonal compression in order to simulate pure shear loading. The CLT panels and the loading setup were designed such that the resulting failure mode will be governed by a shear mechanism. The main focus of the experiment was to relate the deterioration of the lateral strength and stiffness of the panels to the size and layout of the opening. The results showed that the panels with openings with the same area have relatively different failure direction and reduction factors for panel shear strength and stiffness, and that is due to the shear weak and strong direction that CLT panels have. Also, the effect of openings on the reduction of stiffness for CLT panels was found to be greater than their effect on the reduction of shear strength. The prescribed equation in the Japanese CLT Guidebook underpredicts stiffness reduction, and has discrepancies with regard to strength as the difference of panel strengths in weak and strong directions are not considered.
Online Access
Free
Resource Link
Less detail

In-Plane Strength and Stiffness of Cross-Laminated Timber Shear Walls

https://research.thinkwood.com/en/permalink/catalogue2180
Year of Publication
2018
Topic
Mechanical Properties
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Test Method for Determining the In-Plane Shear Strength and Stiffness of Cross Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue1731
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Nygård, Anders
Björnfot, Anders
Tsalkatidis, Themistoklis
Tomasi, Roberto
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
In-Plane Shear Strength
In-Plane Shear Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4754-4763
Summary
The scope of this study is to evaluate the existing test methods for deciding the in-plane shear strength and stiffness of cross laminated timber (CLT) panels, and suggest a new test method. The evaluation of the existing methods point out that none of the methods isolate the pure membrane shear stress. This means that the results have to be interpreted...
Online Access
Free
Resource Link
Less detail

Strength and Stiffness of Cross Laminated Timber (CLT) Panels Produced with Pinus and Eucalyptus: Experimental and Analytical Comparisons

https://research.thinkwood.com/en/permalink/catalogue2453
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Pereira, Marcos Cesar de Moraes
Calil Junior, Carlito
Publisher
SciELO
Year of Publication
2019
Country of Publication
Brazil
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Strength
Stiffness
Language
English
Research Status
Complete
Series
Matéria (Rio J.)
ISSN
1517-7076
Online Access
Free
Resource Link
Less detail

In-Plane Stiffness of CLT Panels With and Without Openings

https://research.thinkwood.com/en/permalink/catalogue1668
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Shahnewaz, Md
Tannert, Thomas
Alam, Shahria
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
In-Plane Loading
Finite Element Analysis
Elastic Stiffness
Openings
Thickness
Aspect Ratios
Analytical Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3813-3820
Summary
The research presented in this paper analysed the stiffness of Cross-Laminated-Timber (CLT) panels under in-plane loading. Finite element analysis (FEA) of CLT walls was conducted. The wood lamellas were modelled as an orthotropic elastic material, while the glue-line between lamellas were modelled using non-linear contact elements. The FEA was verified with test results of CLT panels under in-plane loading and proved sufficiently accurate in predicting the elastic stiffness of the CLT panels. A parametric study was performed to evaluate the change in stiffness of CLT walls with and without openings. The variables for the parametric study were the wall thickness, the aspect ratios of the walls, the size and shape of the openings, and the aspect ratios of the openings. Based on the results, an analytical model was proposed to calculate the in-plane stiffness of CLT walls with openings more accurately than previously available models from the literature.
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber (CLT) Beams Loaded in Plane: Testing Stiffness and Shear Strength

https://research.thinkwood.com/en/permalink/catalogue2136
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Beams

In-Plane Stiffness of Cross-Laminated Timber Floors

https://research.thinkwood.com/en/permalink/catalogue1263
Year of Publication
2012
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Shear Walls
Author
Ashtari, Sepideh
Organization
University of British Columbia
Year of Publication
2012
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Shear Walls
Topic
Mechanical Properties
Keywords
In-Plane Stiffness
Numerical Model
Self-Tapping Screws
Panel-to-Panel
In-Plane Shear Modulus
Stiffness
Language
English
Research Status
Complete
Summary
This study investigates the in-plane stiffness of CLT floor diaphragms and addresses the lateral load distribution within buildings containing CLT floors. In practice, it is common to assume the floor diaphragm as either flexible or rigid, and distribute the lateral load according to simple hand calculations methods. Here, the applicability of theses assumption to CLT floor diaphragms is investigated. There is limited number of studies on the subject of in-plane behaviour of CLT diaphragms in the literature. Many of these studies involve testing of the panels or the connections utilized in CLT diaphragms. This study employs numerical modeling as a tool to address the in-plane behaviour of CLT diaphragms. The approach taken to develop the numerical models in this thesis has not been applied so far to CLT floor diaphragms. Detailed 2D finite element models of selective CLT floor diaphragm configurations are generated and analysed in ANSYS. The models contain a smeared panel-to-panel connection model, which is calibrated with test data of a special type of CLT connection with self-tapping wood screws. The floor models are then extended to building models by adding shearwalls, and the lateral load distribution is studied for each building model. A design flowchart is also developed to aid engineers in finding the lateral load distribution for any type of building in a systematic approach. By a parametric study, the most influential parameters affecting the in-plane behaviour of CLT floor diaphragm and the lateral load distribution are identified. The main parameters include the response of the CLT panel-to-panel connections, the in-plane shear modulus of CLT panels, the stiffness of shearwalls, and the floor diaphragm configuration. It was found that the applicability of flexible or rigid diaphragm assumptions is primarily dependent on the relative stiffness of the CLT floor diaphragm and the shearwalls.
Online Access
Free
Resource Link
Less detail

In-Plane Strength and Stiffness of Cross-Laminated Timber Shear Walls

https://research.thinkwood.com/en/permalink/catalogue2117
Year of Publication
2018
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors

10 records – page 1 of 1.