Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Hygrothermal Performance of Cross-Laminated Timber Wall Assemblies with Built-In Moisture: Field Measurements and Simulations

https://research.thinkwood.com/en/permalink/catalogue273
Year of Publication
2014
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Preliminary Assessment of Hygrothermal Performance of Cross-Laminated Timber Wall Assemblies Using Hygrothermal Models

https://research.thinkwood.com/en/permalink/catalogue2628
Year of Publication
2010
Topic
Moisture
Design and Systems
Serviceability
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Wang, J.
Baldracchi, P.
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Moisture
Design and Systems
Serviceability
Keywords
Hygrothermal
Moisture Performance
Rainscreen
Language
English
Research Status
Complete
Summary
Preliminary simulation was carried out using hygIRC and WUFI, both 1-D hygrothermal models, to analyze moisture performance of rainscreened wood-frame walls and cross-laminated timber (CLT) walls for the climates in Vancouver and Calgary. The major results are as follows. In order to provide baseline knowledge, preliminary comparisons between hygIRC and WUFI were conducted to investigate the effects of climate data, wall orientations and rain intrusion on the performance of the rainscreened wood-frame walls based on Vancouver’s climate. hygIRC tended to produce almost constant moisture content (MC) of the plywood sheathing throughout a year but WUFI showed greater variations, particularly when the ventilation of the rainscreen cavity was neglected. Rainscreen cavity ventilation provided dramatic drying potentials for wall assemblies based on the WUFI simulation. hygIRC indicated that east-facing walls had the highest moisture load, but the differences between orientations seemed negligible in WUFI when the rainscreen cavity ventilation was taken into account. When 1% of wind-driven rain was simulated as an additional moisture load, hygIRC suggested that the rainscreen walls could not dry out in Vancouver, WUFI, however, indicated that they could dry to a safe MC level in the summer. The discrepancies in material property data between the two models and between different databases in WUFI (even for the same wood species) were found to be very large. In terms of wood sorption data, large differences existed at near-saturated RH levels. This is a result of using pressure-plate/membrane methods for measuring material equilibrium moisture content (EMC) under high RH conditions. The EMC of wood at near-100% RH conditions measured with these methods can be higher than 200%, suggesting wood in construction would decay without liquid water intrusion or severe vapour condensation. The pressure-plate/membrane methods also appeared to be highly species-dependent, and have higher EMC at a certain RH level for less permeable species, from which it is relatively difficult to remove water during the measurement. The hygrothermal simulation in this work suggested that such a species bias caused by testing methods could put impermeable species (most Canadian species) at a disadvantage to permeable species like southern pine during related durability design of building assemblies. In terms of using CLT for construction in Vancouver and Calgary, the WUFI simulations suggested that the use of less permeable materials such as EPS (expanded polystyrene insulation), XPS (extruded polystyrene insulation), self-adhered bituminous membrane and polyethylene in wall assemblies reduced the ability of the walls to dry. On the other hand, permeable assemblies such as those using relatively permeable insulation like semi-rigid mineral wool (rock wool) as exterior insulation, instead of less permeable exterior insulation materials, would help walls dry. The simulation also suggested that using CLT products with initially low MC would significantly reduce moisture-related risks, which indicated the importance of protecting CLT and avoiding wetting during transportation and construction. In addition, the simulation found that indoor relative humidity (RH) conditions generated by the indoor RH prediction models included in hygIRC and WUFI varied greatly under the same basic climate and building conditions. The intermediate method specified in ASHRAE Standard 160 P resulted in long periods of saturated RH conditions throughout a year for the Vancouver climate, which may not be representative of ordinary residential buildings in Vancouver. The simulation in this study is preliminary and exploratory. It would be arbitrary to recommend one model over the other based on this report or use the simulation results directly for CLT wall assembly design without consultation with building science specialists. However, this work revealed more opportunities for close collaborations between the wood science and the building science communities. More work should be carried out to develop appropriate testing methods and assemble material property data for hygrothermal simulation of wood-based building assemblies. Model improvement and field verification are also strongly recommended, particularly for new building systems such as CLT constructions.
Online Access
Free
Resource Link
Less detail

Moisture Response of Wall Assemblies of Cross-Laminated Timber Construction in Cold Canadian Climates

https://research.thinkwood.com/en/permalink/catalogue143
Year of Publication
2012
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls

Wetting and Drying Performance and On-site Moisture Protection of Nail-Laminated Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue1871
Year of Publication
2016
Topic
Moisture
Material
NLT (Nail-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Field Measurement of Vertical Movement and Roof Moisture Performance of the Wood Innovation and Design Centre

https://research.thinkwood.com/en/permalink/catalogue1182
Year of Publication
2018
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Roofs
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Roofs
Topic
Serviceability
Moisture
Keywords
Vertical Movement
Moisture Content
Temperature
Relative Humidity
Monitoring
Language
English
Research Status
Complete
Summary
Two of the major topics of interest to those designing taller and larger wood buildings are the susceptibility to differential movement and the likelihood of mass timber components drying too slowly after they become wet during construction. The Wood Innovation and Design Centre in Prince George, British Columbia provides a unique opportunity for non-destructive...
Online Access
Free
Resource Link
Less detail

Field Measurement of Vertical Movement and Roof Moisture Performance of the Wood Innovation and Design Centre

https://research.thinkwood.com/en/permalink/catalogue1638
Year of Publication
2016
Topic
Moisture
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Roofs
Wood Building Systems
Author
Wang, Jieying
Karsh, Eric
Finch, Graham
Chen, Mingyuk
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Roofs
Wood Building Systems
Topic
Moisture
Serviceability
Keywords
Moisture Content
Vertical Movement
Temperature
Relative Humidity
Monitoring
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3152-3160
Summary
The Wood Innovation and Design Centre (WIDC) in Prince George, British Columbia, with 6 tall storeys and a total height of 29.5 m, provided a unique opportunity for non-destructive testing and monitoring to measure the ‘As Built’ performance of a relatively tall mass timber building. The mass timber structural system consists of glulam columns and beams with cross laminated timber (CLT)...
Online Access
Free
Resource Link
Less detail

Evaluating Hygrothermal Performance of Interlocking Cross-Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue804
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Glass, Samuel
Smith, Ryan
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Moisture
Keywords
Climate
Building Envelope
Hygrothermal Performance
US
Interlocking CLT
Moisture
Research Status
In Progress
Summary
Unlike other solid wood panel systems, ICLT panels are manufactured without the use of adhesives or fasteners. Wood members are connected with tongue-andgroove joints within a given layer and with dovetail joints across layers. This reduces cost and allo...
Resource Link
Less detail

Hygrothermal Properties of Cross Laminated Timber and Moisture Response of Wood at High Relative Humidity

https://research.thinkwood.com/en/permalink/catalogue12
Year of Publication
2012
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
General Application

Hygrothermal Performance Of Highly Insulated Wood Frame Walls With Air Leakage: Field Measurements And Simulations

https://research.thinkwood.com/en/permalink/catalogue2316
Year of Publication
2014
Topic
Moisture
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls

Study of Moisture Conditions in a Multi-Story Mass Timber Building through the Use of Sensors and WUFI Hygrothermal Modeling

https://research.thinkwood.com/en/permalink/catalogue1429
Year of Publication
2018
Topic
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

10 records – page 1 of 1.