Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Lateral Behaviour and Direct Displacement Based Design of a Novel Hybrid Structure: Cross Laminated Timber Infilled Steel Moment Resisting Frames

https://research.thinkwood.com/en/permalink/catalogue175
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Frames
Author
Bezabeh, Matiyas
Organization
University of British Columbia
Year of Publication
2014
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Frames
Topic
Design and Systems
Seismic
Keywords
Displacement
Frames
Lateral Loads
Model
Timber-Steel Hybrid
Language
English
Research Status
Complete
Summary
Recently, an innovative hybrid structure has been developed as an alternative lateral-load resisting system at The University of British Columbia. The hybrid structure incorporates Cross Laminated Timber (CLT) shear panels as an infill in steel moment resisting frames (SMRFs). In order to increase the applicability of the proposed system, in this thesis, a direct displacement based design methodology has been developed and analytically validated. Initially, a nonlinear time history analysis (NLTHA) was carried out to study the lateral behaviour of the proposed hybrid structure. For this purpose, a total of 162 different hybrid buildings were modeled and analyzed in OpenSees by using twenty earthquake ground motions (2% probability exceedance in 50 years). Post-earthquake performance indicators (Maximum Interstory Drift (MISD) and Residual Interstory Drift (RISD)) were obtained from the analyses. To assist the post-seismic safety assessment of the hybrid buildings, surrogate models for MISD and RISD were developed using Response Surface Methodology and Artificial Neural Network (ANN). By using the ANN surrogate models as fitness functions for the Genetic Algorithm, optimal modeling parameters of the hybrid system were obtained. Secondly, to represent the energy dissipative capacity of the hybrid system, an equivalent viscous damping (EVD) equation was developed. To formulate the EVD equation, 243 single-storey single-bay CLT infilled SMRF models were developed and subjected to monotonic static and semi-static cyclic analysis. The EVD of each model was calculated from the hysteretic responses based on Jacobsen’s area based approach and later calibrated using NLTHA. Finally, an iterative direct displacement based design method was developed for the proposed hybrid structure. A detailed description of the proposed methodology is presented with a numerical example. In order to verify the proposed method, hybrid buildings with 3-, 6-, and 9- storey heights were designed. A calibrated EVD-ductility relationship was used to obtain the energy dissipation of the equivalent SDOF system for all case study buildings. Nonlinear time history analysis using twenty ground motion records was used to validate the performance of the proposed design methodology. The results indicate that the proposed design method effectively controls the displacements resulting from the seismic excitation of the hybrid structure.
Online Access
Free
Resource Link
Less detail

Force Based Design Guideline for Timber-Steel Hybrid Structures: Steel Moment Resisting Frames with CLT Infill Walls

https://research.thinkwood.com/en/permalink/catalogue83
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Tesfamariam, Solomon
Stiemer, Siegfried
Bezabeh, Matiyas
Goertz, Caleb
Popovski, Marjan
Goda, Katsuichiro
Organization
University of British Columbia
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Overstrength
Ductility
National Building Code of Canada
Timber-Steel Hybrid
Office Buildings
Residential Buildings
Language
English
Research Status
Complete
Summary
Provincial code changes have been made to allow construction of light wood-frame buildings up to 6 storeys in order to satisfy the urban housing demand in western Canadian cities. It started in 2009 when the BC Building Code was amended to increase the height limit for wood-frame structures from four to six. Recently, provinces of Quebec, Ontario and Alberta followed suit. While wood-frame construction is limited to six storeys, some innovative wood-hybrid systems can go to greater heights. In this report, a feasibility study of timber-based hybrid buildings is described as carried out by The University of British Columbia (UBC) in collaboration with FPInnovations. This project, funded through BC Forestry Innovation Investment's (FII) Wood First Program, had an objective to develop design guidelines for a new steel-timber hybrid structural system that can be used as part of the next generation "steel-timber hybrid structures" that is limited in scope to 20 storey office or residential buildings. ...
Online Access
Free
Resource Link
Less detail

Seismic Base Shear Modification Factors for Timber-Steel Hybrid Structure: Steel Moment Resisting Frames with CLT Infill Walls

https://research.thinkwood.com/en/permalink/catalogue1723
Year of Publication
2016
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Bezabeh, Matiyas
Tesfamariam, Solomon
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Mechanical Properties
Keywords
Timber-Steel Hybrid
Overstrength
Ductility
Force Modification Factors
Nonlinear Pushover Analysis
Adjusted Collapse Margin Ratios
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4647-4654
Summary
In this paper, over-strength and ductility-related force modification factors are developed and validated using a collapse risk assessment approach for a timber-steel hybrid structure. The hybrid structure incorporates Cross Laminated Timber (CLT) infill walls within steel moment resisting frames. Following the FEMA P695 procedure...
Online Access
Free
Resource Link
Less detail

Displacement-Based Design of Reinforced Concrete Moment Resisting Frame Incorporating Cross Laminated Timber Infill and Metallic Damper Connector

https://research.thinkwood.com/en/permalink/catalogue1266
Year of Publication
2018
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Madheswaran, Jayanthan
Organization
University of British Columbia
Year of Publication
2018
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Connections
Keywords
Displacement-Based Design
Reinforced Concrete
Metallic Damper Connections
Abaqus
Finite Element Model
Language
English
Research Status
Complete
Summary
This thesis discusses the development of a new innovative reinforced concrete hybrid structure. The hybrid structure consists of reinforced concrete frame incorporated with Cross Laminated Timber (CLT) and metallic damper connections. The seismic design of this proposed system was carried out with the displacement-based design framework and the design was successfully verified. First, this study focused to numerically model the conventional metallic (steel slit) damper and validated with the experimental result using the Abaqus finite element program. Then, to minimize the drawbacks of the conventional damper specimen, a parametric study has been carried out by changing the shape parameters of the damper using the factorial design of experiments. The purpose of conducting a parametric study is to find the appropriate configuration of the damper which can perform well with the proposed hybrid system. Further, the importance of the shape parameter and their interactions in the final response was studied using the response surface method. Secondly, the proposed hybrid system with the metallic damper connection was modeled in Extended Three Dimensional Analysis of Building Systems (ETABS) and then the overall behavior of the system was investigated. In addition, a direct displacement-based design framework was developed for the seismic design of this proposed system. To verify the proposed framework, a 2D six storey hybrid structure was modeled using ETABS. Then, a nonlinear time history analysis was conducted for the modeled structure using 50 set of ground motions to evaluate its performance. The results indicate that the proposed design framework is effective in controlling the displacement of the hybrid system under seismic excitation.
Online Access
Free
Resource Link
Less detail

CLT Infill Panels in Steel Moment Resisting Frames as a Hybrid Seismic Force Resisting System

https://research.thinkwood.com/en/permalink/catalogue107
Year of Publication
2013
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Dickof, Carla
Organization
University of British Columbia
Year of Publication
2013
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
National Building Code of Canada
Timber-Steel Hybrid
Seismic Force Resisting System
Language
English
Research Status
Complete
Summary
This paper examines CLT-steel hybrid systems at three, six, and nine storey heights to increase seismic force resistance compared to a plain wood system. CLT panels are used as infill in a steel moment frame combining the ductility of a steel moment frame system with a stiffness and light weight of CLT panels. This system allows for the combination of high strength and ductility of steel with high stiffness and light weight of timber. This thesis examines the seismic response of this type of hybrid seismic force resisting system (SFRS) in regions with moderate to high seismic hazard indices. A detailed non-linear model of a 2D infilled frame system and compared to the behavior of a similar plain steel frame at each height. Parametric analysis was performed determining the effect of the panels and the connection configuration, steel frame design, and panel configuration in a multi-bay system. Static pushover loading was applied alongside semi-static cyclic loading to allow a basis of comparison to future experimental tests. Dynamic analysis using ten ground motions linearly scaled to the uniform hazard spectra for Vancouver, Canada with a return period of 2% in 50 years as, 10% in 50 years, and 50% in 50 years to examine the effect of infill panels on the interstorey drift of the three, six, and nine storey. The ultimate and yield strength and drift capacity are determined and used to determine the overstrength and ductility factors as described in the National Building Code of Canada 2010.
Online Access
Free
Resource Link
Less detail

Seismic Design of Timber Buildings with a Direct Displacement-Based Design Method

https://research.thinkwood.com/en/permalink/catalogue1904
Year of Publication
2013
Topic
Seismic
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Frames
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Editor
Cruz, Paulo J.S.
Publisher
CRC Press
Year of Publication
2013
Country of Publication
United States
Format
Book/Guide
Material
Light Frame (Lumber+Panels)
Application
Frames
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
Performance-Based Seismic Design
Direct Displacement-Based Design
Displacement
Damping
Language
English
Research Status
Complete
Series
Structures and Architecture: Concepts, Applications and Challenges
ISBN
978-1-4822-2461-0
Summary
Modern seismic design procedures are widely represented by the concept of Performance-Based Seismic Design (PBSD). Direct Displacement-Based Design (DDBD) procedure for PBSD of buildings is considered a very promising method which uses displacement as an input design parameter. The DDBD procedure first codified by Priestley requires an a priori estimate of the design displacement and the associated equivalent viscous damping of the structure, at design performance levels. In this paper, design parameters for the ultimate limit state have been developed for a common construction system for timber buildings. Such parameters are defined as a function of mechanical and geometrical connection configurations.
Online Access
Free
Resource Link
Less detail

Direct Displacement-Based Seismic Design of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1899
Year of Publication
2012
Topic
Seismic
Connections
Application
Frames
Walls
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Publisher
Sociedade Portuguesa de Engenharia Sismica (SPES)
Year of Publication
2012
Country of Publication
Portugal
Format
Conference Paper
Application
Frames
Walls
Wood Building Systems
Topic
Seismic
Connections
Keywords
Direct Displacement-Based Design
Equivalent Viscous Damping
Dowel Type Fastener
Language
English
Conference
15WCEE
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
ISBN
978-1-63439-651-6
Online Access
Free
Resource Link
Less detail

Displacement-Based Seismic Design of Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1891
Year of Publication
2011
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Other Materials
Application
Wood Building Systems
Walls
Floors
Beams
Columns
Frames

Energy Based Seismic Design of a Multi-Storey Hybrid Building: Timber-Steel Core Walls

https://research.thinkwood.com/en/permalink/catalogue1271
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Goertz, Caleb
Organization
University of British Columbia
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Design and Systems
Keywords
Timber-Steel Hybrid
Core Walls
Multi-Storey
High Seismic Regions
Steel Plates
Equivalent Static Force Procedure
Nonlinear Time History Analysis
Language
English
Research Status
Complete
Summary
This thesis discusses a novel timber-steel core wall system for use in multi-storey buildings in high seismic regions. This hybrid system combines Cross Laminated Timber (CLT) panels with steel plates and connections to provide the required strength and ductility to core walled buildings. The system is first derived from first principles and validated in SAP2000. In order to assess the feasibility of the system it is implemented in the design of a 7-storey building based off an already built concrete benchmark building. The design is carried out following the equivalent static force procedure (ESFP) outlined by the National Building Code of Canada for Vancouver, BC. To evaluate the design bi-directional nonlinear time history analysis (NLTHA) is carried out on the building using a set of 10 ground motions based on a conditional mean spectrum. To improve the applicability of the hybrid system an energy based design methodology is proposed to design the timber-core walled building. The methodology is proposed as it does not rely on empirical formulas and force modification factors to determine the final design of the structure. NLTHA is carried out on the proposed methodology using 10 ground motions to evaluate the suitability of the method and the results are discussed and compared to the ESFP results.
Online Access
Free
Resource Link
Less detail

Seismic Performance of Post-Tensioned Moment-Resisting Portal Frames

https://research.thinkwood.com/en/permalink/catalogue1973
Year of Publication
2018
Topic
Seismic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Wood Building Systems

10 records – page 1 of 1.