Skip header and navigation

10 records – page 1 of 1.

Environmental and Economic Evaluation of Small-Scale Bridge Repair Using Cross-Laminated Timber Floor Slabs

https://research.thinkwood.com/en/permalink/catalogue2397
Year of Publication
2020
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Bridges and Spans

Laboratory Investigation of Cross-Laminated Timber (CLT) Decks for Bridge Applications

https://research.thinkwood.com/en/permalink/catalogue2557
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Bridges and Spans
Organization
Forest Products Laboratory
Iowa State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Bridges and Spans
Topic
Mechanical Properties
Keywords
Bridge Decks
Serviceability
Structural Performance
Research Status
In Progress
Notes
Project contacts are James Wacker at the Forest Products Laboratory, Justin Dahlberg and Brent Phares at Iowa State University
Summary
The use of cross-laminated timber (CLT) has gained popularity over the past decade, with many advances stemming from completed research and construction projects in Europe. Many inherent advantages of CLT (such as, it is prefabricated, relatively lightweight, dimensionally stable, and environmentally sustainable) have been utilized in vertical construction projects. Despite these advances, the use of CLT in bridge structures has been limited, and the adoption of CLT into governing design codes has been slow. However, CLT shows promise as a complementary or alternative construction material in bridge decks, and additional research would help characterize the structural attributes of CLT decks to guide their use in bridge projects.
Resource Link
Less detail

Efficient Shear Transfer in Timber-Concrete Composite Bridges by Means of Grouting with Polymer Mortar

https://research.thinkwood.com/en/permalink/catalogue1694
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Bridges and Spans
Author
Kaestner, Martin
Rautenstrauch, Karl
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Bridges and Spans
Topic
Connections
Mechanical Properties
Keywords
Polymer Mortar
Shear Tests
Bending Tests
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4281-4290
Summary
The performance of timber-concrete composite bridge constructions crucially depends on the design of the joint between concrete deck and timber main girders. In research studies at the Bauhaus-University Weimar, innovative joining techniques based on grouting with highly-filled, tolerance-compensating polymer glue mortars have been developed to improve the shear capacity of this joint significantly. By applying a thin layer of polymer mortar on the top of the wooden main girder a continuous, slip-free connection to the timber can be realized. This layer can be utilized for the embedding of steel plates with welded-on shear studs (stud connectors), so that the joint to the concrete side is ensured by a standardised connection. The steel plates are rigidly anchored in the polymer mortar by adhesive bond and form closure. As an alternative, a slip-free grout-glued connection between concrete and timber can be realized by the glue mortar itself, so that also a continuous connection to the concrete is accessible, whereby manufacturing tolerances can easily be compensated due to the high degree of mineral filling of the polymer mortar. The paper focuses on experimental results of shear and bending tests for the new composite joint configurations.
Online Access
Free
Resource Link
Less detail

Evaluation of the Block Shear Resistance of Glulam Manufactured from Borate-Treated Lamina Wthout Planing After Treatment

https://research.thinkwood.com/en/permalink/catalogue367
Year of Publication
2015
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Bridges and Spans
Author
Stirling, Rod
Feng, Martin
Morris, Paul
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Bridges and Spans
Topic
Mechanical Properties
Keywords
Preservative
Borate
Canada
Shear Resistance
Polyurethane
Language
English
Research Status
Complete
Summary
Effective preservative treatments for Canadian glulam products are needed to maintain markets for mass timber on building facades, access markets with significant termite hazards, and expand markets for wood bridges. For all three applications, borate-treatment of lamina before gluing would be preferred as it would lead to maximum preservative penetration. However, the need to plane after treatment and prior to gluing removes the best-treated part of the wood, and creates a disposal issue for treated planer shavings. The present research evaluates the block shear resistance of glulam prepared from untreated and borate-treated lamina with a polyurethane adhesive. Borate treatment was associated with a small but statistically significant loss in median shear strength when evaluated dry; however, there was no difference between the performance of untreated and borate-treated samples when exposed to the vacuum-pressure soak/dry or the boil-dry-freeze/dry procedures. Further work is needed to modify the composition or application of the resin to improve shear strength for glulam applications and ensure consistent performance. However, overall, these data indicate that samples prepared from borate-treated lamina perform similarly in terms of block shear resistance to those prepared from untreated lamina.
Online Access
Free
Resource Link
Less detail

Evaluation of Bending Performance of Nail Laminated and Dowel Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2309
Year of Publication
2019
Topic
Design and Systems
Mechanical Properties
Material
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Roofs
Bridges and Spans
Wood Building Systems

Evaluation of Retrofit Procedures for Nail-Laminated and Stringer Bridges

https://research.thinkwood.com/en/permalink/catalogue1434
Year of Publication
2002
Topic
Mechanical Properties
Material
NLT (Nail-Laminated Timber)
Application
Bridges and Spans
Author
Larson, Timothy
Seavey, Robert
Organization
University of Minnesota
Year of Publication
2002
Country of Publication
United States
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Bridges and Spans
Topic
Mechanical Properties
Keywords
Retrofit
Static Load Tests
Dynamic Load Tests
Deflection
Language
English
Research Status
Complete
Summary
Many of the 1,400 timber bridges in Minnesota do not meet present day standards. Some of these bridges can be improved rather than replaced. When the desired service level can be attained by widening a bridge six feet or less, the bridge can be retrofitted by placing a second, wider, transverse deck onto the existing deck and substructure. Bridge components must be carefully inspected prior to a retrofit project. The retrofit of Bridge #6641 in Sibley County is a good example. First, the bituminous surface was removed. A longitudinal beam supported the extended deck. Grout was poured and leveled and then nail-laminated panels were laid transversely. A bituminous surface was laid over the full width of the new deck. The cost of the project was $51,632. (Replacing the bridge was estimated to take 2-3 years and cost $215,000.) The county quantified the strength change and load distribution characteristics by performing static and dynamic load tests before and after the retrofit. Adding a second deck effectively decreased the static deflections and improved the transverse load distribution. Nail-laminated timber bridge #2642, also in Sibley County, was retrofitted in 1992 and load-tested again in 1995. All dynamic deflections were lower than those of the post-retrofit tests in 1992. This improvement can be explained in part by the drying of the moisture that was introduced into the bridge deck during grouting. A retrofitted timber bridge is expected to last an additional 20-40 years.
Online Access
Free
Resource Link
Less detail

Laboratory and Field Evaluation of a Composite Glued-Laminated Girder to Deck Connection TR-680, 2019

https://research.thinkwood.com/en/permalink/catalogue2477
Year of Publication
2019
Topic
Connections
Mechanical Properties
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans

Timber Concrete Composite Beams with Ductile Failure Modes

https://research.thinkwood.com/en/permalink/catalogue1700
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Bridges and Spans
Beams
Author
Gendron, Benoit
Salenikovich, Alexander
Sorelli, Luca
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Bridges and Spans
Beams
Topic
Connections
Mechanical Properties
Keywords
Shear Connectors
Push-Out Tests
Bending Tests
Elastic
Failure Modes
Slip
Flexural Behaviour
Ductile
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4368-4377
Summary
In the last 15 years timber-concrete composite (TCC) systems have gained market share around the world. To facilitate acceptance of this construction method and to set basis for building TCC bridges in the Province of Quebec, the authors conducted a test program on TCC beams with continuous shear connectors. It included push-out...
Online Access
Free
Resource Link
Less detail

Structural Safety and Rehabilitation of Connections in Wide-Span Timber Structures - Two Exemplary Truss Systems

https://research.thinkwood.com/en/permalink/catalogue1485
Year of Publication
2008
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Bridges and Spans
Author
Dietsch, Philipp
Merk, Michael
Mestek, Peter
Winter, Stefan
Organization
Technical University of Munich
Year of Publication
2008
Country of Publication
Germany
Format
Report
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Bridges and Spans
Topic
Connections
Mechanical Properties
Keywords
Failure Mechanisms
Wide-Span
Cracks
Glue Lines
Strength
Language
English
Research Status
Complete
Summary
Following the Bad Reichenhall ice-arena collapse, numerous expertises on the structural safety of wide-span timber structures were carried out at the Chair of Timber Structures and Building Construction. It became evident that inadequate structural design and detailing as well as inadequate manufacturing principles were the main reasons for observed failures. The design and manufacture of connections in wide-span timber structures are still amongst the most challenging tasks for both the structural engineer as well as the executing company. This paper will, on the basis of two exemplary expertises, discuss specific issues in the structural reliability of connections in wide-span timber trusses and give recommendations towards a state-of-the art design of such connections.
Online Access
Free
Resource Link
Less detail

Bending Capacity of Orthogonal and Parallel Glulam T-section Beams

https://research.thinkwood.com/en/permalink/catalogue2476
Year of Publication
2020
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Bridges and Spans
Author
Wang, Jiejun
Yang, Tao
Ning, Fan
Rao, Zhenyu
Publisher
Eastern Macedonia and Thrace Institute of Technology (EMaTTech)
Year of Publication
2020
Country of Publication
Greece
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Bridges and Spans
Topic
Mechanical Properties
Keywords
Bearing Capacity
Stiffness
Integrity
Strain
Deflection
Ultimate Bearing Capacity
Shear Strength
Finite Element Model
Displacement
Failure Mechanism
Ductility
Language
English
Research Status
Complete
Series
Journal of Engineering Science and Technology Review
ISSN
1791-2377
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.