Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Ductility and Overstrength of Dowelled LVL and CLT Connections Under Cyclic Loading

https://research.thinkwood.com/en/permalink/catalogue1504
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Author
Ottenhaus, Lisa-Mareike
Li, Minghao
Smith, Tobias
Quenneville, Pierre
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Ductility
Overstrength
Cyclic Loading
Monotonic Loading
Dowels
Ductile Failure
Brittle Failure
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 325-333
Summary
This paper presents an experimental study on ductility and overstrength of dowelled connections. Connection ductility and overstrength derived from monotonic testing are often used in timber connection design in the context of seismic loading, based on the assumption that these properties are similar under monotonic and cyclic loading. This assumption could possibly lead to non-conservative connection design. Therefore, it is necessary to quantify ductility and overstrength for cyclic loading and contrast them with their monotonic performance. For this purpose, monotonic and quasi-static cyclic experimental tests were performed on dowelled LVL and CLT connections. The experimental results were also compared with strength predictions from state-of-the-art analytical models in literature that were verified for ductile and brittle failure under monotonic loading. This work also allowed investigation into a generally applicable overstrength factor for push-pull loaded dowelled connections.
Online Access
Free
Resource Link
Less detail

Mode Cross-Over and Ductility of Dowelled LVL and CLT Connections under Monotonic and Cyclic Loading

https://research.thinkwood.com/en/permalink/catalogue1228
Year of Publication
2018
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Author
Ottenhaus, Lisa-Mareike
Li, Minghao
Smith, Tobias
Quenneville, Pierre
Publisher
American Society of Civil Engineers
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Connections
Keywords
Steel Dowels
Steel Plates
Ductility
Brittle
Monotonic Loading
Cyclic Loading
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
This paper presents an experimental study on dowelled connections in Cross Laminated Timber (CLT) and Laminated Veneer Lumber (LVL) using 20 mm mild steel dowels and internal steel plates. Connections designed to fail in brittle row shear and group tear-out were tested under monotonic loading to assess the validity of analytical models from literature and code provisions. Connections designed to provide non-linearity before failure and thus produce ductility were tested under both monotonic and cyclic loading to study the influence of cyclic loading on ductility and the possibility of mode cross-over. It was found that cross layers in CLT improve ductility. Furthermore, mode cross-over from ductile response to brittle failure was observed in both CLT and LVL connections. Nevertheless, a good amount of ductility was achieved in all layouts (except the LVL connections designed for group tear-out failure) before cross-over to brittle failure occurred.
Online Access
Free
Resource Link
Less detail

Ductility of Large-scale Dowelled CLT Connections under Monotonic and Cyclic Loading

https://research.thinkwood.com/en/permalink/catalogue2254
Year of Publication
2017
Topic
Connections
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Shear Walls

Ductility of Dowelled New Zealand Douglas-Fir CLT Connections Under Monotonic and Cyclic Loading

https://research.thinkwood.com/en/permalink/catalogue2114
Year of Publication
2019
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Ottenhaus, Lisa-Mareike
Li, Minghao
Brown, J.
Ravn, C.
Scott, B.
Organization
University of Canterbury
Year of Publication
2019
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Keywords
Multi-Story
Douglas-Fir
Dowel-Type Connections
Dowels
Language
English
Conference
Pacific Conference on Earthquake Engineering
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Dowel Deformations in Multi-Dowel LVL-Connections Under Moment Loading

https://research.thinkwood.com/en/permalink/catalogue583
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Bader, Thomas
Schweigler, Michael
Hochreiner, Georg
Serrano, Erik
Enquist, Bertil
Dorn, Michael
Publisher
Taylor&Francis Online
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Ductility
Bending Moment
Steel Dowels
Double-Shear
Steel-to-Timber
Four Point Bending Test
Language
English
Research Status
Complete
Series
Wood Material Science & Engineering
Summary
The aim of the experimental study presented herein is the assessment and quantification of the behavior of individual dowels in multi-dowel connections loaded by a bending moment. For this purpose, doubleshear, steel-to-timber connections with nine steel dowels arranged in different patterns and with different dowel diameters were tested in 4-point bending. In order to achieve a ductile behavior with up to 7° relative rotation, the connections were partly reinforced with self-tapping screws. The reinforcement did not influence the global load-deformation behavior, neither for dowel diameters of 12 mm nor for 20 mm, as long as cracking was not decisive. The deformation of the individual dowels was studied by means of a non-contact deformation measurement system. Thus, the crushing deformation, i.e. the deformation at the steel plate, and the bending deformation of the dowels could be quantified. In case of 12 mm dowels, the bending deformation was larger than the crushing deformation, while it was smaller in case of 20 mm dowels. Moreover, dowels loaded parallel to the grain showed larger bending deformations than dowels loaded perpendicular to the grain. This indicates that the loading of the individual dowels in the connection differs, depending on their location.
Online Access
Free
Resource Link
Less detail

Load Distribution in Multi-Dowel Timber Connections Under Moment Loading - Integrative Evaluation of Multiscale Experiments

https://research.thinkwood.com/en/permalink/catalogue1499
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Bader, Thomas
Schweigler, Michael
Hochreiner, Georg
Eberhardsteiner, Josef
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Load Distribution
Steel Dowels
Steel Plates
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 244-252
Summary
The load distribution in multi-dowel timber connections under bending moments was investigated by means of an integrative evaluation of a hierarchically organized test program, which encompassed component tests as well as single-dowel and multi-dowel connection tests. It was demonstrated that the anisotropic material behaviour of Laminated Veneer Lumber, and consequently of wood in general, leads to a non-uniform load distribution among the dowels, even for multi-dowel connections with a circular arrangement of dowels. Model predictions from this study highlight inefficiencies of the simplified calculation approach, based on the polar moment of inertia, i.e., based on isotropic theory. Loads of dowels loaded parallel to the grain were found to be underestimated by up to 50%. Through the hierarchically organized experimental campaign with full-field deformation measurement techniques, load distribution effects could be related to the orthotropic material behaviour of wood expressed in terms of load-to-grain angle dependent slip curves of single-dowel connections.
Online Access
Free
Resource Link
Less detail

Behaviour of Cross-laminated Timber Wall Systems Under Monotonic Lateral Loading

https://research.thinkwood.com/en/permalink/catalogue2404
Year of Publication
2019
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
McPolin, Daniel
Hughes, C.
McGetrick, P.
McCrum, D.
Publisher
Taylor&Francis Online
Year of Publication
2019
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Keywords
Tall Timber Buildings
Lateral Load
Earthquake
Language
English
Research Status
Complete
Series
Journal of Structural Integrity and Maintenance
Online Access
Free
Resource Link
Less detail

Coupling Effects of CLT Connections Under Bi-axial Loading

https://research.thinkwood.com/en/permalink/catalogue2285
Year of Publication
2019
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Liu, Jingjing
Publisher
University of British Columbia
Year of Publication
2019
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Keywords
Shear Force
Tension
Mid-Rise
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Friction Under Cyclic Loading

https://research.thinkwood.com/en/permalink/catalogue2066
Year of Publication
2018
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Walls
Author
Claus, Timo
Seim, Werner
Liese, Jessica
Year of Publication
2018
Country of Publication
South Korea
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Cyclic Loadings
Friction Coefficients
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Modeling the Coupling Effect of CLT Connections Under Bi-Axial Loading

https://research.thinkwood.com/en/permalink/catalogue2366
Year of Publication
2019
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Liu, Jingjing
Lam, Frank
Foschi, Ricardo
Li, Minghao
Year of Publication
2019
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Keywords
Coupling Effect
Biaxial loading
Degradation
Modeling
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
This paper presents the modeling of coupling effect of tension and shear loading on Cross Laminated Timber (CLT) connections using a finite element based algorithm called HYST. The model idealizes the connections as a “Pseudo Nail” - elastoplastic beam elements (the nail) surrounded by compression-only spring elements (steel sheath and wood embedment). A gap size factor and an unloading stiffness degradation index of the spring elements under cyclic loading were integrated into the optimized HYST algorithm to consider the coupling effect. The model was calibrated to compare with 32 configurations of CLT angle bracket and hold-down connections tests: in tension with co-existent constant shear force, and in shear with co-existent tension force. The results showed that the proposed model can fully capture the coupling effect of typical CLT connections, considering strength degradation, unloading and reloading stiffness degradation, and pinching effect. The model provided a useful tool for nailbased timber connections and a mechanism-based explanation to understand the hysteretic behaviour of CLT connections under bi-axial loading.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.