Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Predicting Failure of Notched Cross-Laminated Timber Plates Including the Effect of Environmental Stresses

https://research.thinkwood.com/en/permalink/catalogue2354
Year of Publication
2020
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Nairn, John
Year of Publication
2020
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Design and Systems
Keywords
Delamination
Fracture Mechanisms
Residual Stresses
Language
English
Research Status
Complete
Series
Wood Material Science & Engineering
Online Access
Free
Resource Link
Less detail

Elastic Response of Cross-Laminated Engineered Bamboo Panels Subjected to In-Plane Loading

https://research.thinkwood.com/en/permalink/catalogue2305
Year of Publication
2019
Topic
Design and Systems
Material
Other Materials
Application
Walls
Wood Building Systems
Author
Archila-Santos, Hector
Rhead, Andrew
Publisher
ICE Publishing
Year of Publication
2019
Country of Publication
United Kingdom
Format
Journal Article
Material
Other Materials
Application
Walls
Wood Building Systems
Topic
Design and Systems
Keywords
G-XLam
Panels
Strength
Stiffness
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-650X
Online Access
Free
Resource Link
Less detail

Design Process of a Free-Form Structure Using CLT Panels - Analysis of an Architectural Large Scale Structure

https://research.thinkwood.com/en/permalink/catalogue1640
Year of Publication
2016
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Tolszczuk-Leclerc, Zoé
Bernier-Lavigne, Samuel
Salenikovich, Alexander
Potvin, André
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Keywords
Fabrication
CNC
Free-Form
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3179-3186
Summary
This research is about the design process, development and fabrication of a free-form structure in crosslaminated timber (CLT) panels. Since sustainability, ecology and structural design are now relevant in any building project, the purpose of this research is to demonstrate that CLT panels can be used as an ecoresponsive strategy based on a building form. This paper presents the use of a tessellation construction system for designing and producing a freeform surface in CLT for a specific regional and industrial context. The research/creation process and the retroactive simulation generated by the parametric modelling software enabled the development of a singular architectural project where the structural aspect and the manufacturing are the inherent part of the integrated design process. Finally, the cutting files can be generated automatically for an easy transfer to CNC machine tools.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue1472
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Compression Tests
Compression Strength
Energy Dissipation
Post-Tensioned
Pres-Lam
Monotonic Loading
Reverse Cyclic Loading
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community.Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissipators in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted of two main parts: material tests and system tests.
Online Access
Free
Resource Link
Less detail

Towards Timber Mid-Rise Buildings in Chile: Structural Design Challenge and Regulations Gaps

https://research.thinkwood.com/en/permalink/catalogue1634
Year of Publication
2016
Topic
Design and Systems
Market and Adoption
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Santa María, Hernán
Caicedo, Natalia
Montaño, Jairo
Luis Almazán, José
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
Chile
Mid-Rise
Platform Buildings
Building Codes
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2995-3002
Summary
At present in Chile it is not possible to construct buildings higher than 3 storeys using timber as structural material. This difficulty is due to high demands of regulations, in addition to cultural reasons, even though there are buildings in timber with more than 5 storeys built in 1910 in Chile (Sewell), which are preserved nowadays. A multidisciplinary team at UC Timber Innovation Center (CIM UC) works on the design of a mid-rise building in timber with a platform frame system for a mining company with few budget restrictions for this specific project. The results will be presented in this paper. Been the economic feasibility the main concern of the UC Timber Innovation Center (CIM UC), in order to spread this technology to a standard client, a larger team is working in parallel towards a proposal of modification of structural design regulations for the construction of mid-rise buildings in Chile with timber platform frame system. The work included an extensive bibliographic revision, followed by structural tests on 2D and 3D timber structures.
Online Access
Free
Resource Link
Less detail

Numerical Study on De Elastic Buckling of CLT Walls Subjected to Compressive Loads

https://research.thinkwood.com/en/permalink/catalogue2169
Year of Publication
2019
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls

Hybrid System of Unbonded Post-Tensioned CLT Panels and Light-Frame Wood Shear Walls

https://research.thinkwood.com/en/permalink/catalogue757
Year of Publication
2017
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shear Walls
Author
Ho, Tu Xuan
Dao, Thang
Aaleti, Sriram
van de Lindt, John
Rammer, Douglas
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Post-Tensioned
Cyclic Loadings
Dynamic Analysis
Numerical model
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
Cross-laminated timber (CLT) is a relatively new type of massive timber system that has shown to possess excellent mechanical properties and structural behavior in building construction. When post-tensioned with high-strength tendons, CLT panels perform well under cyclic loadings because of two key characteristics: their rocking behavior and self-centering capacity. Although post-tensioned rocking CLT panels can carry heavy gravity loads, resist lateral loads, and self-center after a seismic event, they are heavy and form a pinched hysteresis, thereby limiting energy dissipation. Conversely, conventional light-frame wood shear walls (LiFS) provide a large amount of energy dissipation from fastener slip and, as their name implies, are lightweight, thereby reducing inertial forces during earthquakes. The combination of these different lateral behaviors can help improve the performance of buildings during strong ground shaking, but issues of deformation compatibility exist. This study presents the results of a numerical study to examine the behavior of post-tensioned CLT walls under cyclic loadings. A well-known 10-parameter model was applied to simulate the performance of a CLT-LiFS hybrid system. The posttensioned CLT wall model was designed on the basis of a modified monolithic beam analogy that was originally developed for precast concrete-jointed ductile connections. Several tests on post-tensioned CLT panels and hybrid walls were implemented at the Large Scale Structural Lab at the University of Alabama to validate the numerical model, and the results showed very good agreement with the numerical model. Finally, incremental dynamic analysis on system level models was compared with conventional light-frame wood system models.
Online Access
Free
Resource Link
Less detail

Characterization and Structural Performance in Bending of CLT Panels Made from Small-Diameter Logs of Loblolly/Slash Pine

https://research.thinkwood.com/en/permalink/catalogue2214
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Baño, Vanesa
Godoy, Daniel
Figueredo, Diego
Vega, Abel
Publisher
MDPI
Year of Publication
2018
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Bending Strength
Small Diameter
Language
English
Research Status
Complete
Series
Materials
ISSN
1996-1944
Online Access
Free
Resource Link
Less detail

Ribbed-Plate Approach to Predict Static and Dynamic Responses of Timber Floor with Between-Joist Bracing

https://research.thinkwood.com/en/permalink/catalogue1737
Year of Publication
2016
Topic
Design and Systems
Serviceability
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Khokhar, Aamir
Chui, Ying-hei
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Design and Systems
Serviceability
Acoustics and Vibration
Keywords
Flexural Rigidity
Static Deflection
Concentrated Loads
Natural Frequency
Analytical Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4827-4834
Summary
Installing between-joist bracing can be an economical and effective means of mitigating excessive vibration levels in wood floors associated to human discomfort. Effectiveness of between-joist bracing depends upon its own rigidity that accounts for the location of bracing, geometric arrangement and connection stiffness of installed...
Online Access
Free
Resource Link
Less detail

Predicting the Racking Performance of Wood Shear Wall Systems with Insulated Sheathing

https://research.thinkwood.com/en/permalink/catalogue2245
Topic
Design and Systems
Seismic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Organization
University of Alberta
Country of Publication
Canada
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Design and Systems
Seismic
Energy Performance
Keywords
Shear Walls
Insulated Sheathing
Racking Resistance
Research Status
In Progress
Notes
Project contact is Y.H. Chui at the University of Alberta
Summary
Wood shear wall systems with insulated sheathing are commonly implemented to meet a higher standard of building energy efficiency. Adding a layer of continuous thermal insulation exterior to the cavity insulation, insulated sheathing, to reduce thermal bridging is getting more popular in practice. The impact of the intermediated insulation on racking performance of shear walls has recently been investigated by experimental studies. The test data provides better understanding on the influence of various construction configurations. Nevertheless, there is a need to provide an alternative approach which enables engineers to calculate the design capacities of shear walls with insulated sheathing. In this project, the available analytical models and approaches for determining shear resistances of shear walls are reviewed and compared. A new modified analytical model will be developed based on comparisons and the test results.
Less detail

10 records – page 1 of 1.