Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Evaluating Fire Performance of Nail-Laminated Timber: Influence of Gaps

https://research.thinkwood.com/en/permalink/catalogue2093
Year of Publication
2019
Topic
Fire
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Charring
Gaps
Language
English
Research Status
Complete
Summary
The objective of this work is to generate fire performance data for NLT assemblies to address gaps in technical knowledge. This project aims to study how the size of gaps between NLT boards might affect charring of an assembly and its overall fire performance. This research will support designers and builders in the use of mass timber assemblies in larger and taller buildings, by ensuring fire safe designs.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Exit Fire Separations in Mid-Rise Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue1879
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Topic
Fire
Keywords
National Building Code of Canada
Combustible Material
Mid-Rise
Noncombustible Construction
Language
English
Research Status
Complete
Summary
FPInnovations initiated this project to demonstrate the ability of wood exit stairs in mid-rise buildings to perform adequately in a fire when NBCC requirements are followed, with the intent of changing perceptions of the fire safety of wood construction. The objective of this research is to investigate further the fire safety afforded by exit stair shafts of combustible construction, with the ultimate objective of better consistency between the provincial and national building codes with respect to fire requirements for exit stair shafts in mid-rise wood-frame construction.
Online Access
Free
Resource Link
Less detail

The Merits of Varying Forms of Mass Timber Products for Offsite and Modular Construction

https://research.thinkwood.com/en/permalink/catalogue2677
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Author
Hairstans, Robert
Smith, Ryan
Wilson, Peter
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Topic
Design and Systems
Keywords
Solid Laminate Timber Systems
Offsite
Modular
Structural Composite Lumber
Timber
Language
English
Conference
Modular and Offsite Construction Summit
Research Status
Complete
Summary
Mass timber is a family of Solid Laminate Timber Systems (SLTS) formed from smaller sections of timber connected by glue, mechanical fixings, moisture movement or a combination of methods. These products, which include Structural Composite Lumber, GluLam, Cross Lam, Nail Lam and Dowel Lam (or Brettstapel), have over the past two decades seen an extraordinary upsurge in use internationally. This global phenomenon has been driven by a greater emphasis on the sustainable use of renewable resources and by significant technological developments in the manufacture of SLTS. This research paper considers the merits of each of these products, their manufacturing processes and the corresponding quality assurance requirements necessary for successful project delivery. The paper describes the advantages and barriers to the use of the mass timber and provides an overview of the various aspects to be considered during design for offsite and modular construction. The work presented also provides case studies of how these products have been researched and utilised into live projects in the UK utilising local resource resulting in the formation of new supply chain arrangements. The work further explains the advantages of the respective systems for the given application including information on species selection, connection systems employed and the necessary onsite and offsite management approaches deployed.
Online Access
Free
Resource Link
Less detail

Hybridised Australian Cross Laminated Timber (ACLT) and Orientated Strand Board (OSB) Wall Panels - A Case Study

https://research.thinkwood.com/en/permalink/catalogue703
Year of Publication
2014
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Walls
Author
Bylund, David
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Walls
Topic
Design and Systems
Keywords
Australia
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Following on from the author’s recently completed doctorial research investigating Scandinavian industrially produced engineered construction methodologies and their potential application in Australia, this paper reports on the research and development of a hybridised nail laminated 3 ply CLT and OSB wall panel with a cavity through the design and construction of a prototype commercial building for Western Australia’s largest soft wood timber processor, Wespine. Findings resulting from the author’s doctorial research and research undertaken for New Zealand research consortium, Solid Wood Innovation, demonstrated the potential for rough sawn multi-grade Radiata pine to be used as a structural material with the capacity to be used in developments of five and six storeys when laminated via a simple gun nailing lamination process[1]. This paper introduces new developments on this concept through the hybridisation of a two ply cross laminated panel with OSB bracing to create a rigid modular wall element suitable for a range of building types.
Online Access
Free
Resource Link
Less detail

Sound Insulation Performance of Elevator Shaft Walls built with Nail-Laminated Timber Panels - Exploratory Tests and Preliminary Results

https://research.thinkwood.com/en/permalink/catalogue364
Year of Publication
2016
Topic
Acoustics and Vibration
Material
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Author
Pirvu, Ciprian
Organization
FPInnovations
Year of Publication
2016
Country of Publication
Canada
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Topic
Acoustics and Vibration
Keywords
Building Codes
Canada
Sound Insulation
Apparent Sound Insulation Class
Language
English
Research Status
Complete
Summary
As 6-storey wood-frame, massive-timber and hybrid wood buildings are increasingly accepted by more jurisdictions across Canada, there is a need to develop reliable elevator shaft designs that meet the minimum structural, fire, and sound requirements in building codes. Elevator shaft walls constructed with wood-based materials have the advantages of material compatibility, use of sustainable materials, and ease of construction. In this exploratory study, selected elevator shaft wall designs built with nail-laminated-timber (NLT) structural elements were tested to investigate their sound insulation performance because little is known about the sound insulation performance of such wall assemblies. The tests were carried out in an acoustic mock-up facility in accordance to standard requirements, and provide preliminary data on the sound insulation performance of elevator shaft walls built with NLT panels. Four different elevator shaft walls built with NLT panels were tested and their measured apparent sound insulation class (ASTC) ratings ranged from 18 to 39 depending on their construction details. Some of the reasons that may have contributed to the ASTC ratings obtained for the elevator shaft walls described in this report as well as recommendations for future designs were provided. It is recommended to continue improving the sound insulation of elevator shaft walls built with NLT panels to meet or exceed the minimum requirements in building codes.
Online Access
Free
Resource Link
Less detail

Flexural Performance of Nail-Laminated Timber Crane Mats

https://research.thinkwood.com/en/permalink/catalogue2308
Year of Publication
2018
Topic
Mechanical Properties
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Herberg, Ethan
Publisher
University of Minnesota
Year of Publication
2018
Country of Publication
United States
Format
Thesis
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Keywords
Fasteners
Structural Material
Bending
Load
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Numerical Modelling of Nail Laminated Timber-Concrete Composite Floor System

https://research.thinkwood.com/en/permalink/catalogue1619
Year of Publication
2016
Topic
Mechanical Properties
Material
NLT (Nail-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Zhou, Lina
Chui, Ying Hei
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
NLT (Nail-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Numerical Model
Abaqus
Four Point Bending Test
Stress-Strain
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2407-2413
Summary
With the trend towards sustainable building design, timber-concrete composite floor systems attract great interest among building designers and developers as an alternative to the profiled steel-concrete deck that are commonly used in commercial construction. The proposed 2-layer composite floor deck consists of a profiled nail laminated timber (NLT) mainly designed in tension and concrete slab in compression. A numerical modelling approach was developed via commercial software ABAQUS to simulate the composite action of wood-concrete floors under four-point bending. The effects of NLT profile, thickness of concrete slab topping, fastening details, and shear span on composite action were analysed through a comparison of stress-strain development in both concrete and timber layers and the loaddeformation responses in shear connections of composite floors. Initial construction details of this composite floor system were therefore defined based on the preliminary analysis and will be examined further in the experimental phase of the project.
Online Access
Free
Resource Link
Less detail

Study of Massive Timber Walls based on NLT and Post Laminated LVL

https://research.thinkwood.com/en/permalink/catalogue1585
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
NLT (Nail-Laminated Timber)
Application
Shear Walls
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
NLT (Nail-Laminated Timber)
Application
Shear Walls
Topic
Connections
Mechanical Properties
Keywords
Shear Tests
Glue Lines
Lateral Loading
Sheathing
Load Carrying Capacity
Stiffness
Energy Dissipation
Shear Strength
Language
English
Research Status
Complete
Summary
Currently the massive timber shear walls are mainly made from Cross Laminated Timber (CLT), which possesses a high in-plane shear strength and rigidity. But only part of its elements (mainly the vertically aligned laminae) are engaged in carrying the vertical load and that could be a limitation when designing taller timber structures or wherever higher vertical load is present. This project studied alternative solutions to massive timber shear wall system, based on Nailed Laminated Timber (NLT) and post laminated LVL (Laminated Veneer Lumber). The test was conducted on three levels: shear test on glue/nail line, bending-shear test on a small element, and full size wall test under lateral loading. The former two tests investigated the properties of basic elements in NLT and post laminated LVL. The results were used to design and predict the performance of full size shear walls. The NLT walls were tested under two conditions: without sheathing and with plywood sheathing. The wall without sheathing had the lowest load-carrying capacity and lowest stiffness. Adding plywood sheathing significantly increased its strength and stiffness. The failure in the wall with sheathing was at the sheathing connections, in the forms of nail withdrawal, nail head pull through, and nail breakage. The NLT wall with sheathing had a peak load up to 60% higher than the comparable light wood frame wall, also with a higher stiffness and better ductility. NLT shear walls have an internal energy dissipating capacity which CLT and post laminated LVL walls lack. The post laminated LVL walls behaved as a rigid plate under lateral loading, with little internal deformation. The failure occurred at the holdowns not within the wall. The size effect of its shear strength was studied and an equation was developed to calculate the shear strength of a large size wall plate. Both products have efficient vertical load bearing mechanism by arranging all elements in the vertical direction. They may serve as alternative to light wood frame walls or CLT walls. Some guidelines for the application and design of NLT shear walls and post laminated LVL shear walls were proposed.
Online Access
Free
Resource Link
Less detail

Evaluation of Retrofit Procedures for Nail-Laminated and Stringer Bridges

https://research.thinkwood.com/en/permalink/catalogue1434
Year of Publication
2002
Topic
Mechanical Properties
Material
NLT (Nail-Laminated Timber)
Application
Bridges and Spans
Author
Larson, Timothy
Seavey, Robert
Organization
University of Minnesota
Year of Publication
2002
Country of Publication
United States
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Bridges and Spans
Topic
Mechanical Properties
Keywords
Retrofit
Static Load Tests
Dynamic Load Tests
Deflection
Language
English
Research Status
Complete
Summary
Many of the 1,400 timber bridges in Minnesota do not meet present day standards. Some of these bridges can be improved rather than replaced. When the desired service level can be attained by widening a bridge six feet or less, the bridge can be retrofitted by placing a second, wider, transverse deck onto the existing deck and substructure. Bridge components must be carefully inspected prior to a retrofit project. The retrofit of Bridge #6641 in Sibley County is a good example. First, the bituminous surface was removed. A longitudinal beam supported the extended deck. Grout was poured and leveled and then nail-laminated panels were laid transversely. A bituminous surface was laid over the full width of the new deck. The cost of the project was $51,632. (Replacing the bridge was estimated to take 2-3 years and cost $215,000.) The county quantified the strength change and load distribution characteristics by performing static and dynamic load tests before and after the retrofit. Adding a second deck effectively decreased the static deflections and improved the transverse load distribution. Nail-laminated timber bridge #2642, also in Sibley County, was retrofitted in 1992 and load-tested again in 1995. All dynamic deflections were lower than those of the post-retrofit tests in 1992. This improvement can be explained in part by the drying of the moisture that was introduced into the bridge deck during grouting. A retrofitted timber bridge is expected to last an additional 20-40 years.
Online Access
Free
Resource Link
Less detail

Evaluation of Bending Performance of Nail Laminated and Dowel Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2309
Year of Publication
2019
Topic
Design and Systems
Mechanical Properties
Material
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Roofs
Bridges and Spans
Wood Building Systems

10 records – page 1 of 1.