Skip header and navigation

10 records – page 1 of 1.

Predicting the Fire Resistance of Cross-Laminated Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue1865
Year of Publication
2012
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Solutions for Mid-Rise Wood Construction: Apartment Fire Test with Encapsulated Cross Laminated Timber Construction

https://research.thinkwood.com/en/permalink/catalogue144
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Encapsulation
Large Scale
Mid-Rise
Testing
Timber-Steel Hybrid
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. As part of this project, four large-scale fire experiments were conducted to evaluate the fire performance of two forms of encapsulated combustible structural wood systems, a lightweight wood-frame (LWF) system (2 experiments [3, 4]) and a crosslaminated timber (CLT) system (1 experiment). The fourth experiment [5] involved a test structure constructed using a steel frame system described below. Each experiment involved construction of a test set-up of an unsprinklered full-size apartment unit, intended to represent a portion of a mid-rise (e.g. six-storey) building. The structural elements used in the LWF system (wood stud walls and wood I-joist floors) and CLT system (3-ply wall panels and 5-ply floor panels) were all chosen on the basis of the types of construction that were currently being used in 5- and 6-storey mid-rise residential construction being built in the province of British Columbia, where the building code had changed earlier, in 2009, to permit such mid-rise combustible construction. This report provides the results of the experiment with an encapsulated CLT setup representing an apartment in a mid-rise (e.g. six-storey) building.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Ignition of Selected Wood Building Materials

https://research.thinkwood.com/en/permalink/catalogue350
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Bijloos, Martin
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Mid-Rise
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. A key parameter in the use of encapsulation materials to protect wood structural elements is the ignition temperature of wood. In this report, a brief overview of wood ignition is provided. In addition, the results of limited cone calorimeter testing to determine the ignition characteristics of OSB and torrefied wood are discussed. The ignition temperature of plywood used as a substrate for cone calorimeter tests with encapsulation materials is also provided.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Cone Calorimeter Results for Encapsulation Materials

https://research.thinkwood.com/en/permalink/catalogue351
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Bijloos, Martin
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Encapsulation
Cone Calorimeter
Mid-Rise
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. As part of this project, three materials were selected for investigation as encapsulation materials for combustible structural elements: Type X gypsum board (12.7 mm thick and 15.9 mm thick), cement board (12.7 mm thick), and gypsum-concrete (25 mm thick and 39 mm thick). This report documents the results of cone calorimeter tests conducted to investigate the performance of the three encapsulation materials.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Fire Test for Rainscreen Wall System

https://research.thinkwood.com/en/permalink/catalogue373
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Author
Gibbs, Eric
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Topic
Fire
Keywords
Mid-Rise
Rainscreen
Language
English
Research Status
Complete
Summary
One of the tasks in the project, Wood and Wood-Hybrid Midrise Buildings, was to develop further information and data for use in developing generic exterior wall systems for use in mid-rise buildings using either lightweight wood frame or cross-laminated timber as the structural elements. This report describes a screening fire test conducted on August 22, 2012 on a rainscreen wall system. The test was based on CAN/ULC-S134-13 [3]. However, the dimensions of the test wall (2.4 m wide by 4.9 m high) were less than those required for the standard test conducted in accordance with CAN/ULC-S134.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Intermediate-Scale Furnace Tests with Encapsulation Materials

https://research.thinkwood.com/en/permalink/catalogue353
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Berzins, Robert
Lafrance, Pier-Simon
Leroux, Patrice
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Encapsulation
Mid-Rise
Furnace Tests
Language
English
Research Status
Complete
Summary
The acceptable solutions provided in the 2010 National Building Code (NBC) Division B [1] limits the use of combustible (wood) construction based on building height. For example, for Group C (Residential), Group D (Business and Personal Services) and Group E (Mercantile) occupancies, combustible construction can be used up to 4 storeys, and up to 2 storeys for Group A – Division 2 (Assembly) occupancies. In addition to the building height limitation, there are also building area limitations in the 2010 NBC for the use of combustible construction for these occupancies. For buildings that exceed the height and area requirements for combustible construction, the prescriptive requirements in the 2010 NBC require that noncombustible construction be used for the primary structural elements. Three materials were selected for investigation as encapsulation materials for combustible structural elements: Type X gypsum board (12.7 mm thick and 15.9 mm thick), cement board (12.7 mm thick) and gypsum-concrete (25 mm thick and 39 mm thick). This report documents the results of intermediate-scale furnace tests conducted to investigate the performance of the three encapsulation materials.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Encapsulation Time Data from NRC Fire-Resistance Projects

https://research.thinkwood.com/en/permalink/catalogue34
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Codes
Construction
Encapsulation
Mid-Rise
National Building Code of Canada
Type X Gypsum Board
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. One of the Tasks in the project was to investigate the effectiveness of three materials for use as encapsulation materials for combustible structural elements: Type X gypsum board, cement board and gypsum-concrete. Cone calorimeter and intermediate-scale furnace tests were conducted for these materials. The results of the tests on these materials using the cone calorimeter and the intermediate-scale furnace are provided in References 3 and 4, respectively. In addition to the tests for the three encapsulation materials, data from previous NRC fireresistance projects were reviewed for data on the encapsulation time for structural elements afforded by gypsum board in the context of standard fire-resistance testing. In this report, the results of the data-mining from several of NRC’s fire-resistance testing projects are provided.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Second Apartment Fire Test with Encapsulated Lightweight Wood Frame Construction

https://research.thinkwood.com/en/permalink/catalogue345
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Lougheed, Gary
Su, Joseph
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Gypsum
Mid-Rise
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. As part of this project, four large-scale fire experiments were conducted to evaluate the fire performance of two forms of encapsulated combustible structural wood systems, a lightweight wood-frame (LWF) system (2 experiments [3]) and a crosslaminated timber (CLT) system (1 experiment [4]). The fourth experiment [5] involved a test structure constructed using a steel frame system described below. Each experiment involved construction of a test set-up of an unsprinklered full-size apartment unit, intended to represent a portion of a mid-rise (e.g. six-storey) building. The intent was to provide the opportunity for comparison of the fire performance of the encapsulated LWF and CLT systems to that of the LSF system. However, after the initial 15 min, there were differences in the fire conditions within the apartment in the test of the LSF system that made this comparison difficult. This report provides the results of the second test with an encapsulated LWF setup representing an apartment in a mid-rise (e.g. six-storey) building.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Cone Calorimeter Results for Materials Used In Standard Exterior Wall Tests

https://research.thinkwood.com/en/permalink/catalogue352
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Author
Bijloos, Martin
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Topic
Fire
Keywords
Mid-Rise
Exterior Wall
Cone Calorimeter
Language
English
Research Status
Complete
Summary
One of the tasks in the project, Wood and Wood-Hybrid Midrise Buildings, was to develop further information and data for use in developing generic exterior wall systems for use in mid-A1-100035-01.3 3 rise buildings using either lightweight wood frame or cross-laminated timber as the structural elements. As a result, full-scale standard exterior wall assembly tests were conducted to CAN/ULC-S134. The foam insulations examined for use in the full-scale test assemblies were typical of those used in present-day construction. In addition, a non-standard test (Test EXTW-5) was conducted using a reduced scale rain screen wall system. In addition to the full-scale tests, cone calorimeter tests were conducted to select and characterize the foam insulation, water resistant barrier and FRT plywood materials, as well as the regular gypsum sheathing, used in the full-scale tests. Tests were also conducted with the foam insulations protected using the sheathing materials used in the full-scale tests. The results of the cone calorimeter tests are provided in this report.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Full-Scale Apartment Fire Test with Lightweight Steel Frame Construction

https://research.thinkwood.com/en/permalink/catalogue742
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Mid-Rise
National Building Code of Canada
Residential
Language
English
Research Status
Complete
Summary
The acceptable solutions provided in the 2010 National Building Code (NBC) Division B [1] limits the use of combustible (wood) construction based on building height. For example, for Group C (Residential), Group D (Business and Personal Services) and Group E (Mercantile) occupancies, combustible construction can be used up to 4 storeys, and up to 2 storeys for Group A – Division 2 (Assembly) occupancies. In addition to the building height limitation, there are also building area limitations in the 2010 NBC for the use of combustible construction for these occupancies. For buildings that exceed the height and area requirements for combustible construction, the prescriptive requirements in the 2010 NBC require that noncombustible construction be used for the primary structural elements.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.