Skip header and navigation

10 records – page 1 of 1.

Influence of Orientation and Number of Layers on the Elastic Response and Failure Modes on CLT Floors: Modeling and Parameter Studies

https://research.thinkwood.com/en/permalink/catalogue1418
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Franzoni, Lorenzo
Lebée, Arthur
Lyon, Florent
Forêt, Gilles
Publisher
Springer Berlin Heidelberg
Year of Publication
2016
Country of Publication
Germany
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Failure Modes
Bending
Elastic Behavior
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
ISSN
1436-736X
Summary
In the present paper, the bending behavior of Cross Laminated Timber panels is investigated by means of the linear elastic exact solution from Pagano (1970; 1969). The resulting stresses are the input for a wood failure criterion, which can point out the first-crack load and the respective dominant failure mode. Heterogeneous layers are modeled as equivalent and homogeneous layers. This simplified and deterministic modeling gives results in good agreement with a reference experimental test. A comparison is made with respect to the panel’s global stiffness and failure stages within the apparent elastic stage. Finally, parameter studies are carried out, in order to quantify CLT limitations and advantages. The effect of varying properties like the panel’s slenderness, orientation of transverse layers and number of layers for a fixed total thickness are investigated.
Online Access
Free
Resource Link
Less detail

Mechanical Behavior of Bolted Glulam Beam-to-Column Connections with Slotted-In Steel Plates Under Pure Bending

https://research.thinkwood.com/en/permalink/catalogue1503
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Author
Wang, Mingqian
Song, Xiaobin
Gu, Xianglin
Wu, Yajie
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Topic
Connections
Mechanical Properties
Keywords
Full Scale
Bolted Connection
Beam-to-Beam
Beam-to-Column
Steel Plates
Finite Element Model
Failure Modes
Moment Resistance
Continuum Damage Mechanics
Brittle Failure
Ductile Failure
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 309-316
Summary
In this study, five full-scale bolted glulam beam-to-beam connections with slotted-in steel plates were conducted under a third-point loading, and a three-dimensional finite element method based model was also established to investigate the failure modes and moment resistance of such connections. A material model based on the Continuum Damage Mechanics (CDM) theory was developed to predict damage evolution of wood. Different damage variables were used to consider the ductile and brittle failure modes of wood, respectively. The test results indicated that splitting and shear plug failures were the main failure modes. The numerical analysis model prediction achieved fair agreements with the test results. The research could provide the guide for the design of bolted beam-to-column connections in heavy timber structures.
Online Access
Free
Resource Link
Less detail

Bending Properties of Innovative Multi-Layer Composite Laminated Panels

https://research.thinkwood.com/en/permalink/catalogue1985
Year of Publication
2018
Topic
Mechanical Properties
Material
LSL (Laminated Strand Lumber)
OSL (Oriented Strand Lumber)
Application
Beams

Study on Flexural Behavior of Cross-Laminated Timber Based on Different Tree Species

https://research.thinkwood.com/en/permalink/catalogue2215
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Lu, Weidong
Gu, Jiahui
Wang, Bibo
Publisher
Hindawi Publishing Corporation
Year of Publication
2019
Country of Publication
Egypt
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Flexural Behavior
Failure Modes
Stiffness
Ductility
Ultimate Bearing Capacity
Language
English
Research Status
Complete
Series
Advances in Materials Science and Engineering
Online Access
Free
Resource Link
Less detail

Bond Behavior of Glued-In Timber Joint with Deformed Bar Epoxied in Glulam

https://research.thinkwood.com/en/permalink/catalogue537
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Ling, Zhibin
Liu, Weiqing
Yang, Huifeng
Lu, Weidong
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Glued-in Rods
Bond behavior
Withdrawal Strength
Pull-Pull tests
Failure Modes
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This paper describes the test program of glued-in deformed bar timber joint conducted in pull-pull configuration, which aims to investigate the bond behavior of glued-in deformed bar systems in glulam. The varying parameter are bar slenderness ratio and glue-line thickness. In order to obtain the bond stress distribution along the anchorage length, special deformed bar with strain gauges attached internally were designed. Test results show that both the bar slenderness ratio and glue-line thickness have obvious influence on withdrawal strength and bond behavior of glued-in deformed bar joint. Failure modes of specimens are also analyzed in this paper. Ductile failure modes of glued-in rod timber joint could be realized with reasonable design.
Online Access
Free
Resource Link
Less detail

Compressive Behavior of Glulam Columns with Initial Cracks Under Eccentric Loads

https://research.thinkwood.com/en/permalink/catalogue1463
Year of Publication
2018
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Author
Zhang, Jing
He, Minjuan
Li, Zheng
Publisher
Springer Berlin Heidelberg
Year of Publication
2018
Country of Publication
Germany
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Topic
Mechanical Properties
Keywords
Cracks
Compression Loads
Failure Modes
Load Bearing Capacity
Numerical Model
Language
English
Research Status
Complete
Series
International Journal of Advanced Structural Engineering
ISSN
2008-6695
Summary
This paper investigates the mechanical performance of longitudinally cracked glulam columns under eccentric compression loads. Experimental investigation was conducted to explore the influence of initial cracks on the failure modes and load bearing capacity of glulam columns. Two different crack patterns named DC and IC, and two column lengths (i.e. 600 and 1100 mm) were considered in the experiments. It was indicated that these two crack patterns reduced the capacity of slender glulam columns and the difference of failure modes was observed between glulam columns with and without initial cracks. Further, a numerical model was developed and validated by the test results. With the application of cohesive zone material model, the propagation of initial cracks could be considered in the numerical modeling. A parametric study was carried out by the verified model and the influence of crack lengths and crack locations was further investigated. From the numerical analysis, it was found that through cracks reduced the capacity of glulam columns significantly. Also, crack location impacts the capacity of glulam columns and the extent of impact relates to the slenderness ratio of the columns, while cracks with different lengths have similar influence on the capacity of columns.
Online Access
Free
Resource Link
Less detail

Experimental Analysis of the Structural Behavior of Timber-Concrete Composite Slabs Made of Beech-Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue611
Year of Publication
2013
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Boccadoro, Lorenzo
Frangi, Andrea
Publisher
American Society of Civil Engineers
Year of Publication
2013
Country of Publication
United States
Format
Journal Article
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Connections
Mechanical Properties
Keywords
Beech
Spruce
Load Carrying Capacity
Structural Behavior
Failure Modes
Notch Connections
Language
English
Research Status
Complete
Series
Journal of Performance of Constructed Facilities
Summary
The wood engineering community has dedicated a significant amount of effort over the last decades to establish a reliable predictive model for the load-carrying capacity of timber connections under wood failure mechanisms. Test results from various sources (Foschi and Longworth 1975; Johnsson 2003; Quenneville and Mohammad 2000; Stahl et al. 2004; Zarnani and Quenneville 2012a) demonstrate that for multi-fastener connections, failure of wood can be the dominant mode. In existing wood strength prediction models for parallel to grain failure in timber connections using dowel-type fasteners, different methods consider the minimum, maximum or the summation of the tensile and shear capacities of the failed wood block planes. This results in disagreements between the experimental values and the predictions. It is postulated that these methods are not appropriate since the stiffness in the wood blocks adjacent to the tensile and shear planes differs and this leads to uneven load distribution amongst the resisting planes (Johnsson 2004; Zarnani and Quenneville 2012a). The present study focuses on the nailed connections. A closed-form analytical method to determine the load-carrying capacity of wood under parallel-to-grain loading in small dowel-type connections in timber products is thus proposed. The proposed stiffness-based model has already been verified in brittle and mixed failure modes of timber rivet connections (Zarnani and Quenneville 2013b).
Online Access
Free
Resource Link
Less detail

Shear Resistance and Failure Modes of Edgewise Multiple Tab-and-Slot Joint (MTSJ) Connection with Dovetail Design for Thin LVL Spruce Plywood Kerto-Q Panels

https://research.thinkwood.com/en/permalink/catalogue1563
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Dedijer, Mira
Roche, Stéphane
Weinand, Yves
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Geometry
Multiple Tab-and-Slot Joints
Shear Test
Finger Joint
Failure Modes
Shear Strength
Shear Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1548-1555
Summary
The objective of this study is to experimentally analyse effects of geometry variations of Multiple Tab and Slot Joint (MTSJ) connection with dovetail design on shear mechanical behaviour. Direct shear test was performed on angular ( = 90° ) MTSJ connection made of Kerto-Q 21mm-thick spruce plywood laminated veneer lumber (LVL) panels. Connection was examined in its configuration of three tabs/slots per edge. Nine different geometries of MTSJ connection were tested. In order to provide better understanding of mechanical behaviour of the connection, results were compared with finger joint (F) connection. Two characteristic failure modes were observed. Influence of three theta angles which define geometry of MTSJ connection was analysed concerning shear strength and stiffness. Connection showed very ductile shear behaviour with relatively high stiffness. It has been shown that by increasing q 3 angle above 30°, shear strength decreases. On the other hand, the highest influence on shear stiffness is due to q 2 and q 3 rotations.
Online Access
Free
Resource Link
Less detail

Bond Behavior Between Softwood Glulam and Epoxy Bonded-In Threaded Steel Rod

https://research.thinkwood.com/en/permalink/catalogue450
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Ling, Zhibin
Liu, Weiqing
Lam, Frank
Yang, Huifeng
Lu, Weidong
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Bonding Behavior
Failure Modes
Joints
Load Capacity
Softwood
Threaded Steel Rod
Pull-Pull
Language
English
Research Status
Complete
Series
Journal of Materials in Civil Engineering
Summary
This study aims to develop an improved understanding of the interfacial bond behavior of softwood glulam joints with bonded-in threaded steel rod. A total of 39 glulam joints with bonded-in single-threaded steel rods were tested to failure in the pull-pull configuration. The test results were presented in term of failure modes, load-relative movement response, pullout strength, and the corresponding slip. The distributions of bonded-in rod axial strain, interfacial bond stress, and relative movement were also analyzed to evaluate the local bond stress– relative movement response in the bond line. The results confirmed that the bond-relative movement response is dependent on the locations along the anchorage length, and the bond-relative movement responses located near both the loaded end and the anchorage end were observed to be stiffer than those at other locations. Finally, the predictions for the load capacity of the glulam joints with bonded-in threaded steel rod were carried out based on several existing empirical formulas.
Online Access
Free
Resource Link
Less detail

Connection Wood Brittle Failure in Cross-Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue1552
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Zarnani, Pouyan
Quenneville, Pierre
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Fasteners
Brittle Failure
Failure Modes
Stiffness-Based Design Approach
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1233-1240
Summary
The introduction of Cross-laminated Timber (CLT) as an engineered timber product has played a significant role in the considerable progress of timber construction in recent years. Extensive research has been conducted in Europe and more recently in Canada to evaluate the fastening capacity of different types of fasteners in CLT. While ductile capacities calculated using the yield limit equations are quite reliable for fastener resistance in connections, however, they do not take into account the possible brittle failure modes of the connection which could be the governing failure mode in multi-fastener joints. Therefore, a stiffness-based design approach which has already been developed by the authors and verified in LVL, glulam and lumber has been adapted to determine the block-tear out resistance of connections in CLT by considering the effect of perpendicular layers. The comparison between the test results on riveted connections conducted at the University of Auckland (UoA) and at the Karlsruhe Institute of Technology (KIT) and the predictions using the new model and the one developed for uniformly layered timber products show that the proposed model provides higher predictive accuracy and can be used as a design provision to control the brittle failure of wood in CLT connections.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.