Skip header and navigation

10 records – page 1 of 1.

Impact of Air-Gap Design to Hygro-thermal Properties and Mould Growth Risk Between Concrete Foundation and CLT Frame

https://research.thinkwood.com/en/permalink/catalogue1327
Year of Publication
2017
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Fedorik, Filip
Haapala, Antti
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Serviceability
Moisture
Keywords
Hygrothermal
Mould
Concrete
Multi-Storey
Moisture Content
Airflow
Language
English
Research Status
Complete
Series
Energy Procedia
Summary
The presented work deals with hygro-thermal numerical simulation and mould growth risk evaluation between concrete foundation and frame of multi-story building made of CLT element modules. Structural CLT modules represent an approach towards wood material utilization in construction as its strength achieves markedly higher values then common structural wooden elements and makes rapid erection of the building possible. Although there are great promises that the novel CLT structures will gain ground in high-rise buildings market with apparent benefits in sustainability and inhabitant comments regarding ambience and acoustics, it is important to analyse their structural health and hygro-thermal conditions. The highest risk of unfavourable hygro-thermal conditions is usually presented in location characterized by thermal bridge, such as foundation, window-wall, wall-roof and wall-floor junctions. It is also of significant importance to analyse junctions between materials, whether wood, composite, mortar or concrete. A certain combination of thermal and humidity conditions in exposed time causes mould growth initiation that may lead to deterioration of structural material and unhealthy indoor environment. In this case study, the moisture content and air-flow in the junction and open space in structural design details between the first floor (of concrete) housing joint warehouse and technical spaces and the residential upper floors made of CLT modules is analysed. Conditions leading to probable moisture-derived mould issues and design parameters leading to sufficient ventilation according to Mould Index modelling are presented.
Online Access
Free
Resource Link
Less detail

Timber-Glass Composite: Long-term Behavior

https://research.thinkwood.com/en/permalink/catalogue1743
Year of Publication
2016
Topic
Serviceability
Mechanical Properties
Environmental Impact
Cost
Material
Timber-Glass Composite
Application
Hybrid Building Systems
Author
Fadai, Alireza
Nicklisch, Felix
Rinnhofer, Matthias
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Glass Composite
Application
Hybrid Building Systems
Topic
Serviceability
Mechanical Properties
Environmental Impact
Cost
Keywords
Stiffening
Multi-Story
Long-term
Load Bearing
Creep
Façade
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4921-4929
Summary
Up to now, structural sealant glazing façades have been extensively applied. They are at the cutting edge of technology and meet the highest standards. The objective of several research projects was to develop stiffening glass fronts, which replace expensive frameworks or wind bracings behind the large glass windows. Thus, potential applications...
Online Access
Free
Resource Link
Less detail

Timber Multi-Level Buildings to 20 Levels Based on a Central Core of Integrated CLT Panels

https://research.thinkwood.com/en/permalink/catalogue1804
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Chapman, John
Publisher
New Zealand Timber Design Society
Year of Publication
2018
Country of Publication
New Zealand
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Design and Systems
Keywords
Panels
Multi-Storey
Integrated Elements
Structural Design
Tall Wood
Language
English
Research Status
Complete
Summary
This research investigates a new structural system based on a central core of CLT (cross-laminated timber) panels to provide more useful multi-level timber buildings that are taller and with open floor areas. Because pinus radiata is a suitable timber for the manufacture of CLT panels, the system has the potential to add value...
Online Access
Free
Resource Link
Less detail

Nested Buildings: An Innovative Strategy for the Integrated Seismic and Energy Retrofit of Existing Masonry Buildings with CLT Panels

https://research.thinkwood.com/en/permalink/catalogue2770
Year of Publication
2021
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Valluzzi, Maria Rosa
Saler, Elisa
Vignato, Alberto
Salvalaggio, Matteo
Croatto, Giorgio
Dorigatti, Giorgia
Turrini, Umberto
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Nested Buildings
Seismic Retrofitting
Energy Efficiency
Integrated Intervention
Built Heritage
Masonry Buildings
Panels
Hybrid Structures
Italy
Language
English
Research Status
Complete
Series
Sustainability
Summary
The Italian building heritage is aged and inadequate to the high-performance levels required nowadays in terms of energy efficiency and seismic response. Innovative techniques are generating a strong interest, especially in terms of multi-level approaches and solution optimizations. Among these, Nested Buildings, an integrated intervention approach which preserves the external existing structure and provides a new structural system inside, aim at improving both energy and structural performances. The research presented hereinafter focuses on the strengthening of unreinforced masonry (URM) buildings with cross-laminated timber (CLT) panels, thanks to their lightweight, high stiffness, and good hygrothermal characteristics. The improvement of the hygrothermal performance was investigated through a 2D-model analyzed in the dynamic regime, which showed a general decreasing in the overall thermal transmittance for the retrofitted configurations. Then, to evaluate the seismic behavior of the coupled system, a parametric linear static analysis was implemented for both in-plane and out-of-plane directions, considering various masonry types and connector spacings. Results showed the efficiency of the intervention to improve the in-plane response of walls, thus validating possible applications to existing URM buildings, where local overturning mechanisms are prevented by either sufficient construction details or specific solutions. View Full-Text
Online Access
Free
Resource Link
Less detail

Compression Perpendicular to Grain Behavior for the Design of a Prefabricated CLT Facade Horizontal Joint

https://research.thinkwood.com/en/permalink/catalogue1540
Year of Publication
2016
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Author
Gasparri, Eugenia
Lam, Frank
Liu, Yingyang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Connections
Design and Systems
Keywords
Envelope
Joints
Self-Tapping Screws
Finite Element Analysis
Prefabricated
Vertical Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1088-1098
Summary
The present work aims to define horizontal joint dimension tolerances for newly proposed prefabricated façade systems for applications in tall cross laminated timber (CLT) buildings based on the compression perpendicular to grain characteristics of the component. This requires a thorough understanding of structural settlement under vertical loads which can vary at each floor height. An experimental program has been carried out with reference to the case of a platform frame building construction, where major perpendicular to grain compression of the floor can occur under high loads. Five-layer CLT specimens have been tested under compression via the application of a line load with steel plate as well as actual CLT wall specimens. Strengthening contribution using full threaded self-tapping wood screws has also been investigated. Results of deformation characteristics have been validated through a non-linear finite element analysis and further elaborated in order to outline implications in the design of a prefabricated façade.
Online Access
Free
Resource Link
Less detail

Seismic Base Shear Modification Factors for Timber-Steel Hybrid Structure: Steel Moment Resisting Frames with CLT Infill Walls

https://research.thinkwood.com/en/permalink/catalogue1723
Year of Publication
2016
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Bezabeh, Matiyas
Tesfamariam, Solomon
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Mechanical Properties
Keywords
Timber-Steel Hybrid
Overstrength
Ductility
Force Modification Factors
Nonlinear Pushover Analysis
Adjusted Collapse Margin Ratios
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4647-4654
Summary
In this paper, over-strength and ductility-related force modification factors are developed and validated using a collapse risk assessment approach for a timber-steel hybrid structure. The hybrid structure incorporates Cross Laminated Timber (CLT) infill walls within steel moment resisting frames. Following the FEMA P695 procedure...
Online Access
Free
Resource Link
Less detail

Connections for CLT Diaphragms in Steel-Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue1594
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Joyce, Tom
Smith, Ian
Organization
NEWBuildS
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Connections
Mechanical Properties
Keywords
Steel
Connections
Self-Tapping Screws
Fabrication
Strength
Stiffness
Ductility
Language
English
Research Status
Complete
Summary
The high performance in-plane of cross laminated timber (CLT) panels has created a potential for the use of CLT members act as diaphragms in steel structures. The behaviour of this diaphragm system depends strongly on the connections involved in linking the panels together and to the steel members. A study of the connections at both locations was made using experimental testing of two connection designs for the panel-to-panel case, and the development of a staggered lag screw connection for the panel-to-steel beam case. The results showed good performance for the double spline and fully-threaded inclined screws panel-to-panel connections. The lag screw connection showed high strength, stiffness, and ductility. The CSA Standard O86-09 was found to best predict the strength of both types of connections. Characteristic design stiffness values were presented for the stiffness at low levels of displacement and the initial, elastic stiffness.
Online Access
Free
Resource Link
Less detail

Advancement of Timber Panels as Structural Elements in Composite Floor Systems of Timber-Steel Hybrid Structures

https://research.thinkwood.com/en/permalink/catalogue2785
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Floors
Hybrid Building Systems
Organization
Auburn University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Floors
Hybrid Building Systems
Topic
Design and Systems
Keywords
Timber-Steel Hybrid
Research Status
In Progress
Summary
Auburn University’s (AU) School of Forestry and Wildlife Sciences (SFWS) in Alabama actively works to increase awareness of the benefits of CLT along with hybrid systems for more widespread adoption in multiple building segments. AU’s two-year project proposal outlines a plan that will establish a preliminary design for the usage of a timber-steel composite system, utilizing CLT or laminated veneer lumber (LVL), as an option that will replace reinforced concrete slabs to improve the structural performance for buildings six stories or more.
Less detail

Seismic Resilient Structures with Cross Laminated Timber (CLT) Walls Coupled with Innovative Resilient Slip Friction (RSF) Joints

https://research.thinkwood.com/en/permalink/catalogue1478
Year of Publication
2017
Topic
Design and Systems
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Hashemi, Ashkan
Quenneville, Pierre
Zarnani, Pouyan
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Mechanical Properties
Keywords
Timber-Steel Hybrid
Lateral Load Resisting System
Resilient Slip Friction Joint
Self-Centering
Energy Dissipation
Numerical Model
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
There is an increasing public pressure to have damage avoidant structural systems in order to minimize the destruction after severe earthquakes with no post-event maintenance. This study presents and investigates a hybrid steel-timber damage avoidant Lateral Load Resisting System (LLRS) using Cross Laminated Timber (CLT) walls coupled with innovative Resilient Slip Friction (RSF) joints and boundary steel columns. RSF joints are used as ductile links between the adjacent walls or between the walls and the columns. These joints are capable to provide a self-centring behaviour (the main deficiency of conventional friction joints) in addition to a high rate of energy dissipation all in one compact device. One significant advantage of this system is that there are practically no bending stresses in the CLT panels which considerably increases the allowable capacity of the system. A numerical model for a four story prototype building containing the proposed concept is developed and subjected to time-history simulations. The results confirm that this system can be considered as the new generation of resilient LLRSs for different types of structures.
Online Access
Free
Resource Link
Less detail

Seismic Performance of Embedded Steel Beam Connection in Cross-Laminated Timber Panels for Tall-Wood Hybrid System

https://research.thinkwood.com/en/permalink/catalogue415
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Zhang, Xiaoyue
Azim, Riasat
Bhat, Pooja
Popovski, Marjan
Tannert, Thomas
Publisher
Canadian Science Publishing
Year of Publication
2017
Country of Publication
Canada
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Keywords
Timber-Steel Hybrid
Energy Dissipation
FFTT
Quasi-Static
Monotonic Test
Reverse Cyclic Test
Failure mechanism
Beam Profiles
Embedment
Language
English
Research Status
Complete
Series
Canadian Journal of Civil Engineering
Summary
Recent developments in novel engineered mass timber products and connection systems have created the possibility to design and construct tall timber-based buildings. This research presents the experiments conducted on the steel-wood connection as main energy dissipating part of a novel steel–timber hybrid system labelled Finding the Forest Through the Trees (FFTT). The performance was investigated using quasi-static monotonic and reversed cyclic tests. The influence of different steel beam profiles (wide flange I-sections and hollow rectangular sections), and the embedment approaches (partial and full embedment) was investigated. The test results demonstrated that appropriate connection layouts can lead to the desired failure mechanism while avoiding excessive crushing of the mass timber panels. The research can serve as a precursos for developing design guidelines for the FFTT systems as an option for tall wood-hybrid building systems in seismic regions.
Copyright
Courtesy of Canadian Science Publishing
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.