Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Influence of Boundary Conditions in Modal Testing on Evaluated Elastic Properties of Mass Timber Panel

https://research.thinkwood.com/en/permalink/catalogue283
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Niederwestberg, Jan
Zhou, Jianhui
Chui, Ying Hei
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Mechanical Properties
Keywords
Modal Testing
Boundary Conditions
Elastic Properties
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Cross laminated timber (CLT) has the potential to play a major role in timber construction as floor and wall systems. In order to meet specific design needs and to make the use of CLT more effective, property evaluation of individual CLT panels is desirable. Static tests are time-consuming and therefore costly, and for massive products such as CLT practically impossible to implement. Modal testing offers a fast and more practical tool for the property evaluation of CLT and timber panels in general. This paper presents a comparison of different boundary conditions in modal testing in terms of accuracy, calculation effort and practicality. Single-layer timber panels as well as scaled CLT panels were fabricated. Three elastic properties of the panels were evaluated using modal testing methods with different boundary conditions (BCs). The results were compared with results from static test.
Online Access
Free
Resource Link
Less detail

Mechanical Behavior of Cross-Laminated Timber Panels Made of Low-Added-Value Timber

https://research.thinkwood.com/en/permalink/catalogue2418
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Author
Alencar, Juliana Bello Mussi
Moura, Jorge Daniel de Melo
Publisher
Forest Products Society
Year of Publication
2019
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Topic
Mechanical Properties
Keywords
Structural Performance
Panels
Eucalyptus
Pine
Plantation
Strength
Stiffness
Language
English
Research Status
Complete
Series
Forest Products Journal
Online Access
Free
Resource Link
Less detail

Mechanical Properties of Cross-laminated Timber (CLT) Panels Composed of Treated Dimensional Lumber

https://research.thinkwood.com/en/permalink/catalogue2423
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Author
Tripathi, Sachin
Publisher
Mississippi State University
Year of Publication
2019
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Topic
Mechanical Properties
Keywords
Panels
Rolling Shear
Preservative
Adhesives
Southern Yellow Pine
Out-of-Plane Load
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Composite CLT-Glulam Double-T Panels

https://research.thinkwood.com/en/permalink/catalogue2645
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Roofs
Organization
Fast + Epp
University of Northern British Columbia
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Roofs
Topic
Mechanical Properties
Connections
Keywords
Vibration
Stiffness Properties
Strength
Screw
Vibration Test
Monotonic Loading Tests
GCWood
Research Status
In Progress
Summary
To support the associated Sir Matthew Begbie Elementary School and Bayview Elementary School projects in pushing the boundaries forward for long-span floor and roof construction, this testing project aims to compare different connection approaches for composite connections between glulam and cross-laminated timber (CLT) – for vibration, stiffness, and strength. Working with the University of Northern British Columbia (UNBC), Fast + Epp aimed to complete a series of vibration and monotonic load tests on 30’ long full-scale double-T ribbed panels. The tests consisted of screws in withdrawal, screws in shear, and nominal screws clamping with glue. Both the strength and stiffness are of interest, including slip stiffness of each connection type. This physical testing was completed in January and February 2020, where the full composite strength of each system was reached. Initial data analysis has provided information for comparison with existing models for shear connection stiffness. Publications will follow in 2021.
Resource Link
Less detail

Mechanically Jointed CLT Panels for Wall, Floor and Timber-Concrete Composite Structures

https://research.thinkwood.com/en/permalink/catalogue458
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Walls
Author
Kuklík, Petr
Velebil, Lukáš
Nechanický, Pavel
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Walls
Topic
Connections
Mechanical Properties
Keywords
Mechanical Joints
Mechanical Behaviour
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Cross laminated timber (CLT) has become very popular for all types of structures all around the world in last years. CLT consists of uneven number of plank layers oriented in 90° angle to each other and bonded together. Various types of adhesives and technologies are used for bonding and manufacturing of final product. In some cases, gluing is not ideal manufacturing method and there is a demand of other manufacturing processes. Mechanical jointing is logical result of current research at the Czech Technical University. Research is focused on developing and verifying mechanical behaviour of mechanically jointed CLT solid wood panels. Sets of experiments focused on mechanical behaviour of these mechanically jointed CLT panels were performed. This paper summarizes results of wall, floor and timber-concrete composite elements, which have been tested.
Online Access
Free
Resource Link
Less detail

Experimental and Numerical Evaluation of Cross-Laminated Timber (CLT) Panels Produced with Pine Timber from Thinnings in Uruguay

https://research.thinkwood.com/en/permalink/catalogue1601
Year of Publication
2016
Topic
Market and Adoption
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Baño, Vanesa
Godoy, Daniel
Vega, Abel
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Market and Adoption
Mechanical Properties
Keywords
Uruguay
Pine
Finite Element Model
Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1948-1955
Summary
Due to the high volume of timber required for manufacturing, the production of cross-laminated timber (CLT) panels could be an appropriate destiny for the existing surplus of pinewood presently available in Uruguay. Although wood construction is uncommon in this country, there are some companies with the capacity to adapt their production to new products such as CLT. This work evaluates the properties of CLT panels manufactured in Uruguay with local pine (Pinus taeda and Pinus elliiottii) from forest plantation thinning, which typically present low mechanical properties. Boards and panels were mechanically tested and the mechanical properties were determined, showing a strength class lower than C14. A numerical model, using the finite element method, was developed and the numerical results were compared with the experimental values. The results provided a first approach to the conditions and limitations of the use of CLT panels for building floors, produced under the current manufacturing conditions in Uruguay.
Online Access
Free
Resource Link
Less detail

Behavior of CLT Diaphragm Panel-to-Panel Connections with Self-tapping Screws

https://research.thinkwood.com/en/permalink/catalogue2188
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Topic
Connections
Seismic
Keywords
Screws
Tall Wood
Earthquake
Research Status
In Progress
Notes
Project contact is Thomas Miller at Oregon State University
Summary
Understanding how roof and floor systems (commonly called diaphragms by engineers) that are built from Pacific Northwest-sourced cross-laminated timber (CLT) panels perform in earthquake prone areas is a critical area of research. These building components are key to transferring normal and extreme event forces into walls and down to the foundation. The tests performed in this project will provide data on commonly used approaches to connecting CLT panels within a floor or roof space and the performance of associated screw fasteners. Structural engineers will directly benefit through improved modeling tools. A broader benefit may be increased confidence in the construction of taller wood buildings in communities at greater risk for earthquakes.
Less detail

Long-Term Behavior of Steel-CLT Connections

https://research.thinkwood.com/en/permalink/catalogue2080
Year of Publication
2018
Topic
Connections
Serviceability
Mechanical Properties
Material
Steel-Timber Composite
CLT (Cross-Laminated Timber)
Application
Floors

Connection and Performance of Two-Way CLT Plates

https://research.thinkwood.com/en/permalink/catalogue1482
Year of Publication
2018
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Topic
Mechanical Properties
Connections
Keywords
Two-Way
Bending Test
Modulus of Elasticity
Self-Tapping Screws
Glued-In-Rod
Steel Connectors
Steel Plates
Language
English
Research Status
Complete
Summary
The two-way action of Cross Laminated Timber (CLT) is often ignored in the design of CLT due to its complexity. But in some cases, for example, large span timber floor/roof, the benefit of taking the two-way action into account may be considerable since it is often deflection controlled in the design. Furthermore CLT panels are typically limited to widths of less than 3 m. therefore, for practical applications, engaging CLT panels in two-way action as a plate in bending would require connecting two panels in the width/minor direction to take out-of-plane loading. To address this technically difficult situation, an innovative connection was developed to join the CLT panels in the minor direction to form a large continuous two-way plate. The two-way action of CLT was also quantified. Static bending test was conducted on CLT panels in the major and minor directions to measure the Modulus of Elasticity (MOE). This provided a benchmark for the following connection test, and data for the future development of computer modeling. The average apparent MOE was 9.09 GPa in the major direction and 2.37 GPa in the minor direction. Several connection techniques were considered and tested, including self-tapping wood screws, glued in steel rods, and steel connectors. One connecting system was found to be effective. For the panel configuration considered, the system was consisted of steel plates, self-tapping wood screws, and 45° screw washers. Two steel plates were placed on the tension side with sixteen screws, and one steel plates was placed on the compression side with four screws. When the screws were driven into the wood, the screws were tightly locked with the washers and steel plates, and at the same time, the wood members were pulled together by the screws. This eliminated any original gap within the connection. The connector was installed to join two CLT members in the minor direction. They were tested under bending with the same setup as above. The connected panels had an average apparent MOE of 2.37 GPa, and an average shear-free MOE of 2.44 GPa, both of which were higher than the counterpart in the full panels. The moment capacity of the connected panels was also high. The minimum moment capacity was 3.2 times the design value. Two large CLT panels were tested under concentrated loading with four corners simply supported. The deflection of nine locations within the panels was measured. This data will be used to validate the computer modeling for CLT two-way action.
Online Access
Free
Resource Link
Less detail

Bending Tests on Glulam-CLT Beams connected with Double-Sided Punched Metal Plate Fasteners and Inclined Screws

https://research.thinkwood.com/en/permalink/catalogue320
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Beams
Floors
Author
Jacquier, Nicolas
Organization
Luleå University of Technology
Year of Publication
2015
Country of Publication
Sweden
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Beams
Floors
Topic
Connections
Mechanical Properties
Keywords
Bending Test
Shear Connections
Double-sided Punched Metal Plate
Inclined Screws
Language
English
Research Status
Complete
Summary
This report presents bending tests performed on composite beams made from glulam beams and cross laminated timber (CLT) panels. The composite beam, with a T-cross section, represents a section of a floor element in a multi-storey CLT construction system. The shear connections used were made either of doublesided punched metal plate fasteners, either of inclined screws, or of a combination of both fastener types. The screws are used to secure the shear connection with double-sided nail plates with respect to possible separation forces between the glulam and the CLT. An additional test with a screw glued connection was made for comparison as the upper bound case in terms of composite action. The results show the beams with double-sided nail plates (with or without screws) achieved a very high level of composite action and an overall satisfactory behaviour. Almost full composite action was achieved for the screw-glued composite beam. A detailed design example of the beam element according to the Eurocode 5 and Finnish National Annex is presented.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.