Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Feasibility Study of Mass-Timber Cores for the UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1895
Year of Publication
2018
Topic
Design and Systems
Environmental Impact
Seismic
Wind
Material
LVL (Laminated Veneer Lumber)
Application
Shafts and Chases

Feasibility of Cross-Laminated Timber Cores for the UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1905
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases

Feasibility Study of a Wood-Concrete Hybrid Super Tall Building and Optimization of its Wind-Induced Behaviour

https://research.thinkwood.com/en/permalink/catalogue1902
Year of Publication
2018
Topic
Design and Systems
Wind
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Frames
Walls
Shafts and Chases

Feasibility Study of Tall Concrete-Timber Hybrid System

https://research.thinkwood.com/en/permalink/catalogue1274
Year of Publication
2017
Topic
Seismic
Wind
Design and Systems
Application
Hybrid Building Systems
Author
Kaushik, Kuldeep
Organization
University of British Columbia
Year of Publication
2017
Country of Publication
Canada
Format
Thesis
Application
Hybrid Building Systems
Topic
Seismic
Wind
Design and Systems
Keywords
Lateral Loads
Gravity Loads
Timber-Concrete Hybrid
Inter-Story Drift
Language
English
Research Status
Complete
Summary
Although wood is widely used as a construction material, it is mostly limited to low and mid-rise residential construction, partially due to fire code restrictions. This limitation can be overcome by considering hybrid systems which combine wood with non-combustible materials. This research presents an innovative wood-concrete hybrid system, suitable for tall buildings, where a concrete frame with slabs at every third story provides fire separation as well as stiffness and strength to resist gravity and lateral loads. The intermediate stories including their floors are constructed using light-frame wood modules. This approach reduces the environmental footprint of the building, reduces the building weight and therefore the seismic demand on connections and foundation, and speeds up the construction process. For a novel system, numerical modeling is crucial to predicting its structural response to static and dynamic loading. This thesis studies the structural feasibility of the system by developing finite element models and assessing the structural behavior at the component and system levels when subjected to earthquake and wind loads. Nonlinear analyses are performed considering material and geometric nonlinearity using multiple ground motions to estimate the structure’s inter-story drift and base shear. The results demonstrate the feasibility of the proposed wood-concrete hybrid system for tall buildings in high seismic zones.
Online Access
Free
Resource Link
Less detail

Feasibility of Cross Laminated Timber Panels in Construction: A Case Study of Carbon12

https://research.thinkwood.com/en/permalink/catalogue2594
Year of Publication
2020
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Graber, Erik
Publisher
California Polytechnic State University
Year of Publication
2020
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Cost
Design and Systems
Keywords
Mid-Rise
Case Study
Cost comparison
Concrete Slab
Language
English
Research Status
Complete
Summary
Cross Laminated Timber (CLT) is an extremely strong engineered wood panel intended for roof, floor, or wall applications. Currently there is little research comparing CLT to steel and concrete, materials CLT hopes to replace This research uses a detailed literary analysis on CLT and case study on Carbon12, a recently constructed CLT structure in Portland, Oregon, to compare the cost and schedule requirements of CLT with a cast-in-place concrete slab. The case study consisted of a detailed analysis of Carbon12, interview with Scott Noble, senior project manager for Carbon12, and a detailed schedule and cost analysis. Results showed that for a concrete floor system used on Carbon12, material costs were far less than costs for a CLT floor system and labor costs were far greater than costs for a CLT floor system. For the schedule analysis, results showed that a concrete floor system would add an additional 10 weeks to the construction schedule of Carbon12. These results led to the conclusion that CLT is a feasible building material for dense, urban, mid-rise structures similar to Carbon12. The quick installation time, small crew, and environmental benefits of CLT outweigh the added costs of the material.
Online Access
Free
Resource Link
Less detail

Tall Cross-Laminated Timber Building: Design and Performance Session WW300 Experimental and Modeling Studies on Wood Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue618
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Dolan, Daniel
Bordry, Vincent
Pei, Shiling
van de Lindt, John
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2014
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Damping
Multi-Story
Ductility
Cost
Fire Resistance
Language
English
Conference
Structures Congress 2014
Research Status
Complete
Notes
April 3-5, 2014, Boston, Massachusetts, United States
Summary
Cross-laminated timber (CLT) is widely perceived as the most promising option for building high-rise wood structures due to its structural robustness and good fire resistance. While gravity load design of a tall CLT building is relatively easy to address because all CLT walls can be utilized as bearing walls, design for significant lateral loads (earthquake and wind) can be challenging due to the lack of ductility in current CLT construction methods that utilize wall panels with low aspect ratios (height to length). Keeping the wall panels at high aspect ratios can provide a more ductile response, but it will inevitably increase the material and labor costs associated with the structure. In this study, a solution to this dilemma is proposed by introducing damping and elastic restoring devices in a multi-story CLT building to achieve ductile response, while keeping the integrity of low aspect ratio walls to reduce the cost of construction and improve fire resistance. The design methodology for incorporating the response modification devices is proposed and the performance of the as-designed structure under seismic is evaluated.
Online Access
Payment Required
Resource Link
Less detail

Structural Design, Approval, and Monitoring of a UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1252
Year of Publication
2017
Topic
Serviceability
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Author
Tannert, Thomas
Moudgil, Ermanu
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Topic
Serviceability
Mechanical Properties
Design and Systems
Keywords
Vertical Shrinkage
Horizontal Building Vibration
Structural Performance
Concrete Core
Brock Commons
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
In this paper, we discuss the structural design of one of the tallest timber-based hybrid buildings in the world: the 18 storey, 53 meter tall student residence on the campus of the University of British Columbia in Vancouver. The building is of hybrid construction: 17 storeys of mass wood construction on top of one storey of concrete construction. Two concrete cores containing vertical circulation provide the required lateral resistance. The timber system is comprised of cross-laminated timber panels, which are point supported on glued-laminated timber columns and steel connections between levels. In addition to providing more than 400 beds for students, the building will serve as an academic site to monitor and study its structural performance, specifically horizontal building vibration and vertical shrinkage considerations. We present the challenges relating to the approval process of the building and discuss building code compliance issues.
Online Access
Payment Required
Resource Link
Less detail

CLT Feasibility Study: A Study of Alternative Construction Methods in the Pacific Northwest

https://research.thinkwood.com/en/permalink/catalogue1896
Year of Publication
2014
Topic
Design and Systems
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls

Feasibility of Using Poplar as Cross Layer to Fabricated Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue620
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Wang, Zhiqiang
Fu, Hongmei
Chui, Ying-hei
Gong, Meng
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Bonding Strength
Shear Strength
Modulus of Elasticity
Failure Modes
Poplar
Douglas-Fir
Pine
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Use of poplar (Populus euramericana cv. I-214) as cross layer to manufacture cross-laminated timber (CLT) was examined in this study. For comparison purpose, Douglas fir (Pseudotsuga menziesii) and Monterey pine (Pinus radiata D.Don) were used as well to produce five layups of CLT panels. The mechanical properties tested in this study included the bending strength in the major direction, modulus of elasticity in the major direction, shear strength parallel to the major direction and shear strength perpendicular to the major direction. It was found that the mechanical properties of CLT panels containing poplar were similar to those made of non-poplar wood. The major failure modes found were joint failure, shear failure and delamination. It could be feasible to use poplar as a cross layer to fabricate CLT without decreasing its strength properties.
Online Access
Free
Resource Link
Less detail

Feasibility of Cross-laminated Secondary Timber

https://research.thinkwood.com/en/permalink/catalogue2446
Year of Publication
2019
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Rose, Colin
Stegemann, Julia
Year of Publication
2019
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Environmental Impact
Keywords
Cross-Laminated Secondary Timber (CLST)
Secondary Timber
Reuse
Upcycle
Language
English
Research Status
Complete
Series
Proceedings of International Conference on Sustainable Construction Materials and Technologies
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.