Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Seismic Design of Core-Walls for Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue134
Year of Publication
2013
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Author
Dunbar, Andrew
Pampanin, Stefano
Palermo, Alessandro
Buchanan, Andrew
Year of Publication
2013
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Topic
Design and Systems
Seismic
Keywords
Multi-Storey
Prefabrication
Pres-Lam
Residential
Quasi-Static Loading
Energy Dissipation
U-Shaped Flexural Plates
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 26-28, 2013, Wellington, New Zealand
Summary
This paper describes options for seismic design of pre-fabricated timber core-wall systems, used as stairwells and lift shafts for lateral load resistance in multi-storey timber buildings. The use of Cross-Laminated Timber (CLT) panels for multi-storey timber buildings is gaining popularity throughout the world, especially for residential construction. This paper describes the possible use of CLT core-walls for seismic resistance in open-plan commercial office buildings in New Zealand. Previous experimental testing at the University of Canterbury has been done on the in-plane behaviour of single and coupled Pres-Lam post-tensioned timber walls. However there has been very little research done on the behaviour of timber walls that are orthogonal to each other and no research into CLT walls in the post-tensioned Pres-Lam system. This paper describes the proposed test regime and design detailing of two half-scale twostorey CLT stairwells to be tested under a bi-directional quasi-static loading. The test specimens will include a half-flight stair case with landings within the stairwell. The “High seismic option” consists of post-tensioned CLT walls coupled with energy dissipating U-shaped Flexural Plates (UFP) attached between wall panels and square hollow section steel columns at the corner junctions. An alternative “Low seismic option” uses the same post-tensioned CLT panels, with no corner columns or UFPs. The panels will be connected by screws to provide a semi-rigid connection, allowing relative movement between the panels producing some level of energy dissipation.
Online Access
Free
Resource Link
Less detail

Energy Based Seismic Design of a Multi-Storey Hybrid Building: Timber-Steel Core Walls

https://research.thinkwood.com/en/permalink/catalogue1271
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Goertz, Caleb
Organization
University of British Columbia
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Design and Systems
Keywords
Timber-Steel Hybrid
Core Walls
Multi-Storey
High Seismic Regions
Steel Plates
Equivalent Static Force Procedure
Nonlinear Time History Analysis
Language
English
Research Status
Complete
Summary
This thesis discusses a novel timber-steel core wall system for use in multi-storey buildings in high seismic regions. This hybrid system combines Cross Laminated Timber (CLT) panels with steel plates and connections to provide the required strength and ductility to core walled buildings. The system is first derived from first principles and validated in SAP2000. In order to assess the feasibility of the system it is implemented in the design of a 7-storey building based off an already built concrete benchmark building. The design is carried out following the equivalent static force procedure (ESFP) outlined by the National Building Code of Canada for Vancouver, BC. To evaluate the design bi-directional nonlinear time history analysis (NLTHA) is carried out on the building using a set of 10 ground motions based on a conditional mean spectrum. To improve the applicability of the hybrid system an energy based design methodology is proposed to design the timber-core walled building. The methodology is proposed as it does not rely on empirical formulas and force modification factors to determine the final design of the structure. NLTHA is carried out on the proposed methodology using 10 ground motions to evaluate the suitability of the method and the results are discussed and compared to the ESFP results.
Online Access
Free
Resource Link
Less detail

Seismic Performance of Core-Walls for Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue61
Year of Publication
2014
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Dunbar, Andrew
Pampanin, Stefano
Buchanan, Andrew
Year of Publication
2014
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Keywords
Connections
Multi-Storey
Post-Tensioned
Quasi-Static
Half-Scale
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
March 21-23, 2014, Auckland, New Zealand
Summary
This paper describes the results of experimental tests on two posttensioned timber core-walls tested under bi-directional quasi-static seismic loading. The half-scale two-storey test specimens included a stair with half-flight landings. The use of Cross-Laminated Timber (CLT) panels for multi-storey timber buildings is gaining popularity throughout the world, especially for residential construction. Posttensioned timber core-walls for lift-shafts or stairwells can be used for seismic resistance in open-plan commercial office buildings Previous experimental testing has been done on the in-plane behaviour of single and coupled timber walls at the University of Canterbury and elsewhere. However, there has been very little research done on the 3D behaviour of timber walls that are orthogonal to each other, and no research to date into post-tensioned CLT walls. The “high seismic option” consisted of full height post-tensioned CLT walls coupled with energy dissipating U-shaped Flexural Plates (UFPs) attached at the vertical joints between coupled wall panels and between wall panels and the steel corner columns. An alternative “low seismic option” consisted of post-tensioned CLT panels connected by screws, to provide a semi-rigid connection, allowing relative movement between the panels, producing some level of frictional energy dissipation.
Online Access
Free
Resource Link
Less detail

Timber Core-Walls for Lateral Load Resistance of Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1858
Year of Publication
2018
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Dunbar, Andrew
Moroder, Daniel
Pampanin, Stefano
Buchanan, Andrew
Publisher
New Zealand Timber Design Society
Year of Publication
2018
Country of Publication
New Zealand
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Pres-Lam
Earthquake
Post-Tensioned
Core-Walls
Multi-Storey
Panels
Language
English
Research Status
Complete
Series
New Zealand Timber Design Journal
Online Access
Free
Resource Link
Less detail

Design of Floor Diaphragms in Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue294
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Author
Moroder, Daniel
Smith, Tobias
Pampanin, Stefano
Palermo, Alessandro
Buchanan, Andrew
Year of Publication
2015
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Topic
Design and Systems
Seismic
Keywords
Diaphragms
Multi-Storey
Commercial
Lateral Loads
Equivalent Truss Method
Lateral Load Resisting System
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 10-12, 2015, Rotorua, New Zealand
Summary
This paper discusses the design of timber diaphragms, in response to the growing interest in multi-storey commercial timber structures, and the lack of guidance or regulations regarding the seismic design of timber diaphragms. Proper performance of floor diaphragms is required to transfer all lateral loads to the vertical systems that resist them, but design for earthquake loads can be more complex than design for wind loads. This paper confirms that the seismic design of a diaphragm is intimately linked to the seismic design of the whole building. Diaphragm failure, even if restricted to a limited diaphragm portion, can compromise the behaviour of the whole building. It is therefore necessary to design and detail diaphragms for all possible load paths and to evaluate their influence on the load distribution within the rest of the structure. It is strongly recommended that timber diaphragms be designed as elastic elements, by applying dynamic amplification and overstrength factors derived from the lateral load resisting system. This paper shows that some current design recommendations for plywood sheathing on light timber framing can be applied to massive wood diaphragms, but for more complex floor geometries an equivalent truss method is suggested. Diaphragm flexibility and displacement incompatibilities between the floor diaphragms and the lateral resisting systems also need to be accounted for.
Online Access
Free
Resource Link
Less detail

Achieving Sustainable Urban Buildings with Seismically Resilient Mass Timber Core Wall and Floor System

https://research.thinkwood.com/en/permalink/catalogue2802
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Cores
Walls
Floors
Wood Building Systems
Organization
Portland State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Cores
Walls
Floors
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Hold-Down
Seismic Performance
Core Walls
Parametric Analysis
Deformation Capacity
Overstrength
Mid-Rise
High-Rise
Tall Wood Buildings
Research Status
In Progress
Notes
Project contact is Peter Dusicka at Portland State University
Summary
The urgency in increasing growth in densely populated urban areas, reducing the carbon footprint of new buildings, and targeting rapid return to occupancy following disastrous earthquakes has created a need to reexamine the structural systems of mid- to high-rise buildings. To address these sustainability and seismic resiliency needs, the objective of this research is to enable an all-timber material system in a way that will include architectural as well as structural considerations. Utilization of mass timber is societally important in providing buildings that store, instead of generate, carbon and increase the economic opportunity for depressed timber-producing regions of the country. This research will focus on buildings with core walls because those building types are some of the most common for contemporary urban mid- to high-rise construction. The open floor layout will allow for commercial and mixed-use occupancies, but also will contain significant technical knowledge gaps hindering their implementation with mass timber. The research plan has been formulated to fill these gaps by: (1) developing suitable mid- to high-rise archetypes with input from multiple stakeholders, (2) conducting parametric system-level seismic performance investigations, (3) developing new critical components, (4) validating the performance with large-scale experimentation, and (5) bridging the industry information gaps by incorporating teaching modules within an existing educational and outreach framework. Situated in the heart of a timber-producing region, the multi-disciplinary team will utilize the local design professional community with timber experience and Portland State University's recently implemented Green Building Scholars program to deliver technical outcomes that directly impact the surrounding environment. Research outcomes will advance knowledge at the system performance level as well as at the critical component level. The investigated building system will incorporate cross laminated timber cores, floors, and glulam structural members. Using mass timber will present challenges in effectively achieving the goal of desirable seismic performance, especially seismic resiliency. These challenges will be addressed at the system level by a unique combination of core rocking combined with beam and floor interaction to achieve non-linear elastic behavior. This system behavior will eliminate the need for post-tensioning to achieve re-centering, but will introduce new parameters that can directly influence the lateral behavior. This research will study the effects of these parameters on the overall building behavior and will develop a methodology in which designers could use these parameters to strategically control the building seismic response. These key parameters will be investigated using parametric numerical analyses as well as large-scale, sub-system experimentation. One of the critical components of the system will be the hold-down, a device that connects the timber core to the foundation and provides hysteretic energy dissipation. Strength requirements and deformation demands in mid- to high-rise buildings, along with integration with mass timber, will necessitate the advancement of knowledge in developing this low-damage component. The investigated hold-down will have large deformation capability with readily replaceable parts. Moreover, the hold-down will have the potential to reduce strength of the component in a controlled and repeatable way at large deformations, while maintaining original strength at low deformations. This component characteristic can reduce the overall system overstrength, which in turn will have beneficial economic implications. Reducing the carbon footprint of new construction, linking rural and urban economies, and increasing the longevity of buildings in seismic zones are all goals that this mass timber research will advance and will be critical to the sustainable development of cities moving forward.
Resource Link
Less detail

Seismic Design of Mixed CLT/Light-Frame Multi-Storey Buildings

https://research.thinkwood.com/en/permalink/catalogue1666
Year of Publication
2016
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Follesa, Maurizio
Fragiacomo, Massimo
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Mechanical Properties
Keywords
Multi-Storey
Q Factor
Eurocode 8
Nonlinear Time History Analysis
Dynamic Analysis
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3750-3759
Summary
This paper presents a study on the seismic design of hybrid multi-storey wood buildings made of CLT and Light-Frame shear walls acting at the same level. Within the framework of the force-based method, the aim of this study is to propose a simple formulation in order to establish the value of the q-factor of the hybrid system which could be also implemented in seismic design codes such as Eurocode 8. This was achieved by analysing the results of nonlinear dynamic (time-history) analyses performed on a four storey case-study building with different combinations of CLT and Light-Frame shear walls.
Online Access
Free
Resource Link
Less detail

Seismic Design of Multi-Storey Cross Laminated Timber Buildings According to Eurocode 8

https://research.thinkwood.com/en/permalink/catalogue392
Year of Publication
2013
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Follesa, Maurizio
Christovasilis, Ioannis
Vassallo, Davide
Fragiacomo, Massimo
Ceccotti, Ario
Year of Publication
2013
Country of Publication
Italy
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
Eurocode 8
Multi-Storey
Language
English
Research Status
Complete
Series
International Journal of Earthquake Engineering
Summary
Cross Laminated Timber (CLT) structures are nowadays increasingly used worldwide and mostly in Europe where the system originated. However, in spite of this diffusion which led to the construction of a great number of multi-storey buildings all over Europe, still Eurocodes are almost completely missing provisions for CLT designers, especially regarding the seismic design. Nevertheless, Eurocode 8 requires in most cases, due to the regularity criteria being not fulfilled for most of the buildings, the use of the modal response spectrum analysis method, i.e. the linear dynamic analysis. This method requires the correct estimation of the lateral stiffness of the building in order to accurately calculate the design seismic forces in the building, which may be significantly underestimated or overestimated depending on the size of the building and the shape of the design spectrum. This can be done by modelling each connection with different methods that are often based on available test results, which are not easily accessible by a practicing engineer. This paper provides a design approach for dynamic linear modelling of CLT structures using SAP 2000. Equations are proposed based on available design codes and literature references, and used to design a 3-storey case study building. Further provisions for the seismic design of CLT buildings which are not included in Eurocode 8 are also given. Finally, the proposed design model is also compared with the results of the shaking table tests conducted in 2006 in Japan by CNR-IVALSA on a three-storey CLT building.
Online Access
Free
Resource Link
Less detail

Structural Characterization of Multi-Storey CLT Buildings Braced with Cores and Additional Shear Walls

https://research.thinkwood.com/en/permalink/catalogue203
Year of Publication
2015
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Polastri, Andrea
Pozza, Luca
Loss, Christiano
Smith, Ian
Organization
International Network on Timber Engineering Research (INTER)
Year of Publication
2015
Country of Publication
Croatia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Connections
Keywords
Codes
Eurocode
Mid-Rise
Language
English
Conference
INTER 2015
Research Status
Complete
Notes
August 24-27, 2015, Šibenik, Croatia
Summary
This paper related to elimination of the deficiencies. The behaviour of multi-storey buildings braced with cores and CLT shear walls is examined based on numerical analyses. Two procedure for calibrating numerical analysis models are proposed using information from Eurocode 5 [13] and specific experimental test data. This includes calibration of parameters that characterise connections between CLT panels and other CLT panels, building cores and shear walls. The aim is to make the characterizations of behaviours of connections that reflect how those connections perform within complete multi-storey superstructures, rather than in isolation or as parts of substructures. The earthquake action for cases studied was according to Eurocode 8 [14] and using the appropriate behaviour factor (q factor). Results of analyses of entire buildings are presented in terms of principal elastic periods, base shear and up-lift forces. Discussion addresses key issues associated with behaviour of such systems and modelling them. Obtained results permit creation of appropriate guidelines and rules for design of the aforementioned types of hybrid buildings incorporating CLT wall panels.
Online Access
Free
Resource Link
Less detail

Structural Characterization of Multi-Storey Buildings with CLT Cores

https://research.thinkwood.com/en/permalink/catalogue496
Year of Publication
2014
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Polastri, Andrea
Pozza, Luca
Trutalli, Davide
Scotta, Roberto
Smith, Ian
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Keywords
Multi-Storey
Numerical model
Building Cores
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The behaviour of multi-storey buildings braced with Cross-Laminated-Timber (CLT) cores and additional shear walls is examined based on numerical analyses of various 3-dimensional configurations. Two ways of calibrating numerical model are proposed according to codes and experimental test data respectively, including calibration of parameters that characterise connections between CLT panels in building cores and shear walls. Results of analyses of entire buildings are presented in terms of principal elastic periods, and base shear and up-lift forces. Discussion addresses primary issues associated with behaviour of such systems and modelling them.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.