Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Summary Report: Survey of International Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue1870
Year of Publication
2014
Topic
Market and Adoption
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Other Materials
Application
Wood Building Systems

Fire Safety Challenges of Tall Wood Buildings – Phase 2: Task 1 - Literature Review

https://research.thinkwood.com/en/permalink/catalogue1215
Year of Publication
2016
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Brandon, Daniel
Östman, Birgit
Publisher
Fire Protection Research Foundation
Year of Publication
2016
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Heat Release Rate
Charring Rate
Compartment Fire Test
Language
English
Research Status
Complete
Summary
Recent architectural trends include the design and construction of increasingly tall buildings with structural components comprised of engineered wood referred to by names including; cross laminated timber (CLT), laminated veneer lumber (LVL), or glued laminated timber (Glulam). These buildings are cited for their advantages in sustainability resulting from the use of wood as a renewable construction material. Previous research has shown that timber elements contribute to the fuel load in buildings and can increase the initial fire growth rate – potentially overwhelming fire protection system and creating more severe conditions for occupants, emergency responders, and nearby properties. The overarching goal of this project Fire Safety Challenges of Tall Wood Buildings Phase 2 is to quantify the contribution of CLT building elements (wall and/or floor-ceiling assemblies) in compartment fires and provide data to allow comparison of the performance of CLT systems against other building systems commonly used in tall buildings.
Online Access
Free
Resource Link
Less detail

Fire Safety Challenges of Tall Wood Buildings. Phase 2: Task 4 - Engineering Methods

https://research.thinkwood.com/en/permalink/catalogue1212
Year of Publication
2018
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Brandon, Daniel
Publisher
Fire Protection Research Foundation
Year of Publication
2018
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Design and Systems
Keywords
Gypsum
Design
Language
English
Research Status
Complete
Summary
Recent architectural trends include the design and construction of increasingly tall buildings with structural components comprised of engineered wood referred to by names including: cross laminated timber (CLT), laminated veneer lumber (LVL), or glued laminated timber (Glulam). These buildings are cited for their advantages in sustainability resulting from the use of wood as a renewable construction material. Previous research has shown that timber elements contribute to the fuel load in buildings and can increase the initial fire growth rate – potentially overwhelming fire protection system and creating more severe conditions for occupants, emergency responders, and nearby properties. The overarching goal of this project Fire Safety Challenges of Tall Wood Buildings Phase 2 (involving five tasks) is to quantify the contribution of CLT building elements (wall and/or floor-ceiling assemblies) in compartment fires and provide data to allow comparison of the performance of CLT systems against other building systems commonly used in tall buildings.
Online Access
Free
Resource Link
Less detail

Fire Safety Challenges of Tall Wood Buildings – Phase 2: Task 2 & 3 – Cross Laminated Timber Compartment Fire Tests

https://research.thinkwood.com/en/permalink/catalogue1214
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Su, Joseph
Lafrance, Pier-Simon
Hoehler, Matthew
Bundy, Matthew
Organization
National Research Council of Canada
Publisher
Fire Protection Research Foundation
Year of Publication
2018
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Compartment Fire Test
Tall Wood
North America
Type X Gypsum Board
Ventilation
Language
English
Research Status
Complete
Summary
Recent architectural trends include the design and construction of increasingly tall buildings with structural components comprised of engineered wood referred to by names including; cross laminated timber (CLT), laminated veneer lumber (LVL), or glued laminated timber (Glulam). These buildings are cited for their advantages in sustainability resulting from the use of wood as a renewable construction material. Previous research has shown that timber elements contribute to the fuel load in buildings and can increase the initial fire growth rate – potentially overwhelming fire protection system and creating more severe conditions for occupants, emergency responders, and nearby properties. The overarching goal of this project Fire Safety Challenges of Tall Wood Buildings Phase 2 (involving five tasks) is to quantify the contribution of CLT building elements (wall and/or floor-ceiling assemblies) in compartment fires and provide data to allow comparison of the performance of CLT systems against other building systems commonly used in tall buildings.
Online Access
Free
Resource Link
Less detail

Fire Safety Challenges of Tall Wood Buildings - Phase 2: Task 5 – Experimental Study of Delamination of Cross Laminated Timber (CLT) in Fire

https://research.thinkwood.com/en/permalink/catalogue1211
Year of Publication
2018
Topic
Fire
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Brandon, Daniel
Dagenais, Christian
Publisher
Fire Protection Research Foundation
Year of Publication
2018
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Connections
Keywords
Delamination
Adhesives
Compartment Fires
Tall Wood
Language
English
Research Status
Complete
Summary
Recent architectural trends include the design and construction of increasingly tall buildings with structural components comprised of engineered wood referred to by names including; cross laminated timber (CLT), laminated veneer lumber (LVL), or glued laminated timber (Glulam). These buildings are cited for their advantages in sustainability resulting from the use of wood as a renewable construction material. Previous research has shown that timber elements contribute to the fuel load in buildings and can increase the initial fire growth rate – potentially overwhelming fire protection system and creating more severe conditions for occupants, emergency responders, and nearby properties. The overarching goal of this project Fire Safety Challenges of Tall Wood Buildings Phase 2 (involving five tasks) is to quantify the contribution of CLT building elements (wall and/or floor-ceiling assemblies) in compartment fires and provide data to allow comparison of the performance of CLT systems against other building systems commonly used in tall buildings.
Online Access
Free
Resource Link
Less detail

Fire Safety and Tall Timber Buildings—What’s Next?

https://research.thinkwood.com/en/permalink/catalogue1253
Year of Publication
2017
Topic
Design and Systems
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Barber, David
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
Fire Safety
Exposed Load Bearing Timber
Concealed Connections
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
Model building codes in the United States limit timber construction to six stories, due to concerns over fire safety and structural performance. With new timber technologies, tall timber buildings are now being planned for construction. The process for building approval for a building constructed above the code height limits with a timber load-bearing structure, is by an alternative engineering means. Engineering solutions are required to be developed to document and prove equivalent performance to a code compliant structure, where approval is based on substantive consultation and documentation. Architects in the US are also pushing the boundaries and requesting load-bearing timber be exposed and not fully encapsulated in fire rated gypsum drywall. This provides an opportunity for the application of recent fire research on exposed timber to be applied, and existing methods of analyzing the impact of fire on engineered timber structures to be developed further. This paper provides an overview of the performance based fire safety engineering required for building approval and also describes the engineering methodologies that can be utilized to address specific exposed load-bearing timber issues; concealed connections for glulam beams; and the methodology to address areas of exposed timber.
Online Access
Payment Required
Resource Link
Less detail

Fire Protection Construction Sequencing in Mass Timber Buildings for Fire Safety

https://research.thinkwood.com/en/permalink/catalogue2787
Topic
Fire
Application
Wood Building Systems
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Application
Wood Building Systems
Topic
Fire
Keywords
Passive Fire Protection
Construction Sequencing
Fire Spread
Fire Dynamics
Research Status
In Progress
Notes
Project contact is Yelda Turkan, Oregon State University
Summary
Over the past decade, fires have caused significant losses, both financial and through loss of lives, in timber buildings during construction (USFA 2020). Buildings under construction or in development are largely unprotected as they are not yet equipped with active fire protection systems (sprinklers), and for those buildings that are not designed for exposed timber, multiple floors are left exposed at a time as the fire protection trade trails in schedule behind the erection of the mass timber structural elements. With the addition of Type IVA, B, and C in the 2021 International Building Code (IBC), the IBC also adopted stricter requirements for mass timber buildings under construction. Under-construction mass timber buildings require that the mass timber is protected with noncombustible material within four levels of any construction more than six stories above grade. However, limited research has occurred to demonstrate that this construction sequence results in the optimal balance of safety, property loss, and cost. The goals of this project are to: (a) develop a methodology to couple multiple commonly-used computational tools to evaluate the sequence of installation of passive fire protection in mass timber buildings under construction fire scenarios, (b) develop an analytical framework that can be implemented by industry to evaluate the risk and impact of fire protection construction sequencing on a job site while balancing property loss, cost, and life safety of construction workers due to a construction fire, and (c) identify knowledge gaps in fire dynamics in timber buildings that would increase the accuracy of predicting fire spread in mass timber buildings under construction.
Resource Link
Less detail

Fire Safety Summary: Fire Research Conducted for the Project on Mid-Rise Wood Construction

https://research.thinkwood.com/en/permalink/catalogue43
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Su, Joseph
Lougheed, Gary
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Fire
Keywords
Encapsulation
Mid-Rise
Safety
Tall Wood
Exterior Walls
Language
English
Research Status
Complete
Summary
Working in collaboration with the Canadian Wood Council and FPInnovations and in partnership with Natural Resources Canada and the governments of Ontario, Quebec and British Columbia, the National Research Council conducted a comprehensive research project, Research Consortium for Wood and Wood-Hybrid Mid-rise Buildings. This consortium project aimed to develop technical information that could be used to support acceptable solutions that meet the NBC’s objectives for fire safety, acoustics, and building envelope performance, in order to facilitate the use of wood-based structural materials in mid-rise buildings. The objectives of the Wood and Wood-Hybrid Midrise Buildings research project were to develop performance data and technical solutions in the areas of fire safety, acoustics and building envelope pertinent to the use of wood-based structural materials in mid-rise buildings, i.e. to develop an alternative solution to meet the 2010 NBC requirements for non-combustible construction for 5-6 storey (and taller) buildings. This project was intended to address the immediate needs for technical solutions for mid-rise wood buildings that do not compromise the minimum levels of safety and performance required by the 2010 NBC in the areas of fire safety and fire protection, acoustics, and building envelope performance.
Online Access
Free
Resource Link
Less detail

Highlighting the Unique Challenges and Differences of Building with Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2731
Year of Publication
2020
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Richmond, Ryan
Publisher
California Polytechnic State University
Year of Publication
2020
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
Construction
Research
Challenges
Language
English
Research Status
Complete
Summary
As the construction industry shifts towards sustainability and owners seek to construct buildings that are sustainable - built from natural and renewable materials, and pleasing for their occupants to work in - mass timber is becoming the popular alternative to traditional steel and concrete buildings. An abundance of information is available on mass timber products and their properties and applications, but little information on the process of actually building a mass timber project. This report seeks to extend practical knowledge on building with mass timber. In order to accomplish this, this research will highlight specific differences and challenges related to building with mass timber; create general guidelines and recommendations for contractors tasked with building a mass timber project; and identify new areas of research. Through interviews with two commercial contractors who have built mass timber projects in the California Bay Area, specific challenges have been identified. These challenges include longer project duration; increased preconstruction time and complexity; difficulties getting timely plan approvals; differing design and material procurement methods; necessity of MEP coordination at the beginning of the jobs; unique transportation, storage, and handling requirements; and different installation procedures and requirements.
Online Access
Free
Resource Link
Less detail

Reliability of Sprinkler Protection of Tall Wood Buildings During and After a Seismic Event

https://research.thinkwood.com/en/permalink/catalogue806
Year of Publication
2014
Topic
Fire
Seismic
Application
Wood Building Systems
Author
Harmsworth, Andrew
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Application
Wood Building Systems
Topic
Fire
Seismic
Keywords
High-Rise
Reliability
Tall Wood
Sprinklers
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
A major concern with tall wood buildings is fire during or after an earthquake. Through a survey of factors including reliability of systems, reliability of water supplies, availability of professional and civilian fire fighting, the paper will examine the overall reliability of sprinkler systems in including assessment of the ability untrained fire fighters to suppress fires in a timber high-rise in the absence of professional fire fighters. A probability based fault tree analysis will provide guidance designers of tall wood buildings in providing acceptable fire safety after a seismic event.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.