Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Finite Element Modeling for Vibration Transmission in a Cross Laminated Timber Structure

https://research.thinkwood.com/en/permalink/catalogue1633
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Vardaxis, Nikolaos-Georgios
Hagberg, Klas
Bard, Delphine
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Sweden
Numerical Model
Finite Element Model
Impact Noise Transmission
Impact Sound
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2953-2962
Summary
This paper deals with a certain type of C.L.T. (Cross Laminated Timber) construction, in a residential building in Fristad, Sweden. The objective is to study impact noise transmission, at the lower frequency range (10-200 Hz), where wooden dwellings perform inefficiently, in terms of acoustic quality. The vibrational behavior of lightweight structures and specifically a multilayered floor separating two vertically adjacent bedrooms are investigated. A numerical model of the multilayered test plate, which includes sound insulation and vibration isolation layers, is developed using the Finite Element Method (F.E.M.) in commercial software. The design process, the analysis and improvement of the calculated outcome concerning accuracy and complexity are of interest. In situ vibration measurements were also performed so as to evaluate the structures dynamic behavior in reality and consequently the validity of the modelled results. The whole process from design to evaluation is discussed thoroughly, where uncertainties of the complex F.E.M. model and the approximations of the real structure are analyzed. Numerical comparisons are presented including mechanical mobility and impact noise transmission results. The overall aim is to set up a template of calculations that can be used as a prediction tool in the future by the industry and researchers.
Online Access
Free
Resource Link
Less detail

Ambient Vibration Testing and Modal Analysis of Multi-Storey Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue237
Year of Publication
2014
Topic
Acoustics and Vibration
Wind
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Reynolds, Thomas
Bolmsvik, Åsa
Vessby, Johan
Chang, Wen-Shao
Harris, Richard
Bawcombe, Jonathan
Bregulla, Julie
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Serviceability
Keywords
Modal Properties
Multi-Storey
Damping
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The ambient movement of three modern multi-storey timber buildings has been measured and used to determine modal properties. This information, obtained by a simple, unobtrusive series of tests, can give insights into the structural performance of these forms of building, as well as providing information for the design of future, taller timber buildings for dynamic loads. For two of the buildings, the natural frequency has been related to the lateral stiffness of the structure, and compared with that given by a simple calculation. In future tall timber buildings, a new design criterion is expected to become important: deflection and vibration serviceability under wind load. For multi-storey timber buildings there is currently no empirical basis to estimate damping for calculation of wind-induced vibration, and there is little information for stiffness under wind load. This study therefore presents a method to address those gaps in knowledge.
Online Access
Free
Resource Link
Less detail

Ambient Vibration Measurement Data of a Four-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2211
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Mugabo, Ignace
Barbosa, André
Riggio, Mariapaola
Batti, James
Publisher
Frontiers Media
Year of Publication
2019
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Albina Yard
Ambient Vibration Testing
Operational Modal Analysis
Language
English
Research Status
Complete
Series
Frontiers in Built Environment
ISSN
2297-3362
Online Access
Free
Resource Link
Less detail

Radiation Efficiency Of Cross Laminated Timber Panels By Finite Element Modelling

https://research.thinkwood.com/en/permalink/catalogue2422
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Author
Zhou, Jianhui
Publisher
Canadian Acoustical Association
Year of Publication
2019
Country of Publication
Canada
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Topic
Acoustics and Vibration
Keywords
Finite Element Modelling
Abaqus
Sound Radiation Efficiency
Boundary Conditions
Language
English
Research Status
Complete
Series
Journal of the Canadian Acoustical Association
Online Access
Free
Resource Link
Less detail

In-Situ Testing at Wood Innovation and Design Centre: Floor Vibration, Building Vibration, and Sound Insulation Performance

https://research.thinkwood.com/en/permalink/catalogue284
Year of Publication
2015
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Hu, Lin
Pirvu, Ciprian
Ramzi, Redouane
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Acoustics and Vibration
Keywords
Natural Frequency
Damping Ratio
Static Deflection Testing
Vibration Performance
Sound Transmission
Language
English
Research Status
Complete
Summary
In order to address the lack of measured natural frequencies and damping ratios for wood and hybrid wood buildings, and lack of knowledge of vibration performance of innovative CLT floors and sound insulation performance of CLT walls and floors, FPInnovations conducted a series of performance testing at the Wood Innovation Design Centre (WIDC) in Prince George, BC in April 2014, during construction, and in May 2015, after building completion and during its occupation. This report describes the building, tested floor and wall assemblies, test methods, and summarizes the test results. The preliminary performance data provides critical feedback on the design of the building for resisting wind-induced vibration and on the floor vibration controlled design. The data can be further used to validate the calculation methods and tools/models of dynamic analysis.
Online Access
Free
Resource Link
Less detail

Development of a Vibroacoustic Stochastic Finite Element Prediction Tool for a CLT Floor

https://research.thinkwood.com/en/permalink/catalogue2008
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Qian, Cheng
Ménard, Sylvain
Bard, Delphine
Negreira, Juan
Publisher
MDPI
Year of Publication
2019
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Impact Sound Insulation
Low Frequency
Simulation
Language
English
Research Status
Complete
Series
Applied Sciences
ISSN
2076-3417
Online Access
Free
Resource Link
Less detail

Ambient Vibration Tests of a Cross-Laminated Timber Building

https://research.thinkwood.com/en/permalink/catalogue313
Year of Publication
2015
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Reynolds, Thomas
Harris, Richard
Chang, Wen-Shao
Bregulla, Julie
Bawcombe, Jonathan
Publisher
ICE Publishing
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Wind
Keywords
Damping
Dynamic Movement
In Situ
Multi-Storey
Stiffness
Modal Properties
Ambient Vibration Method
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-6518
Summary
Cross-laminated timber has, in the last 6 years, been used for the first time to form shear walls and cores in multi-storey buildings of seven storeys or more. Such buildings can have low mass in comparison to conventional structural forms. This low mass means that, as cross-laminated timber is used for taller buildings still, their dynamic movement under wind load is likely to be a key design parameter. An understanding of dynamic lateral stiffness and damping, which has so far been insufficiently researched, will be vital to the effective design for wind-induced vibration. In this study, an ambient vibration method is used to identify the dynamic properties of a seven-storey cross-laminated timber building in situ. The random decrement method is used, along with the Ibrahim time domain method, to extract the modal properties of the structure from the acceleration measured under ambient conditions. The results show that this output-only modal analysis method can be used to extract modal information from such a building, and that information is compared with a simple structural model. Measurements on two occasions during construction show the effect of non-structural elements on the modal properties of the structure.
Online Access
Free
Resource Link
Less detail

Modal Vibration Testing of an Innovative Timber Structure

https://research.thinkwood.com/en/permalink/catalogue1494
Year of Publication
2016
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Hybrid Building Systems
Author
Leyder, Claude
Frangi, Andrea
Chatzi, Eleni
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Hybrid Building Systems
Topic
Acoustics and Vibration
Keywords
Beech
Post-Tensioned
Modal Vibration Tests
Eigenfrequencies
Damping Ratios
Mode Shapes
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 177-185
Summary
This research paper deals with the evaluation of the dynamic modal vibration tests conducted on an innovative timber structure, the ETH House of Natural Resources. The building serves as a demonstrator of several innovative structural systems and technologies relating to timber. The main load-bearing structure comprises a posttensioned timber frame, which was subjected to modal vibration tests, firstly in the laboratory and, subsequently on the construction site. In this paper, the modal characteristics (eigenfrequencies, damping ratios and mode shapes), obtained from the laboratory testing campaign are presented. The modal vibration data is evaluated using polynomial and subspace identification techniques. The obtained results reveal that the structure exhibits pure translational, beam and column modes, as well as mixed beam-column modes. The bottom connection of the columns delivers significant influence on the modal characteristics, whereas the level of post-tensioning force yields no substantial influence in the modal characteristics obtained from low amplitude modal vibration tests.
Online Access
Free
Resource Link
Less detail

Vibration Response Modelling of Cross Laminated Timber Slabs

https://research.thinkwood.com/en/permalink/catalogue1621
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Ussher, Ebenezer
Weckendorf, Jan
Smith, Ian
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Finite Element
Dynamic Response
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2494-2501
Summary
Innovations in timber engineering have led to new slab systems built from engineered wood products like cross-laminated-timber (CLT). High stiffness of CLT can enable attainment of better vibration performances than is possible with traditional shallow profile-long span floors constructed from timber and other materials. However, realization of this depends on engineers being able to accurately predict effects various construction variables have on dynamic responses of CLT slabs. Past physical experiments have provided insights into those effects. However, testing is a very expensive and time consuming means of acquiring necessary knowledge. Discussion here addresses finite element (FE) simulations as a cost effective method allowing engineers to understand and assess relationships between design variables and dynamic responses of CLT floor slabs. Presented modelling techniques are verified by demonstrating close correlation between numerical predictions and experimental modal response characteristics of CLT slabs.
Online Access
Free
Resource Link
Less detail

Dynamic Characterization and Vibration Analysis of a Four-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2213
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

10 records – page 1 of 1.