Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Structural Performance Monitoring Technology and Data Visualization Tools and Techniques – Featured Case Study: UBC Tallwood House

https://research.thinkwood.com/en/permalink/catalogue2342
Year of Publication
2018
Topic
Moisture
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Columns
Floors
Author
Mustapha, Gamal
Khondoker, Khaleed
Higgins, James
Year of Publication
2018
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Columns
Floors
Topic
Moisture
Serviceability
Keywords
Moisture Performance
Vertical Movement
Prefabrication
Language
English
Conference
International Conference on New Horizons in Green Civil Engineering
Research Status
Complete
Summary
Wood structures such as the Wood Innovation and Design Center in Prince George and the UBC Tallwood House, an 18 storey, 53-meter-tall mass timber hybrid building are examples of new and innovative wood structures that encompass new construction techniques, unique materials and novel building practices. Empirical data on the condition of critical components and access to the real-time status of the structure during construction gives Architects, Engineers and Contractors critical information to make informed decisions to either validate or improve the construction plan. Data recorded during the life of the building helps validate the design decisions and proves the viability and feasibility of the design. Methods and practices used to monitor both the moisture performance of prefabricated cross laminate timber (CLT) as well as the vertical movement sensing of the building during and after construction are explored in this paper. Moisture content of the CLT panels has been recorded from manufacturing and prefabrication to storage, through transport and during installation and will continue throughout the service life of the building. The calculated and expected displacement of the wood columns is scheduled to take several years as the structure settles, however a first-year analysis and extrapolation of the data was conducted. Monitoring during transport, storage, and construction proved that CLT panels were resilient to moisture issues while in the manufacturers storage, but prone to direct exposure to moisture-related problems regardless of the precautions taken on site. Despite construction during typical Pacific Northwest rain, informed decisions were made to ensure the panel moisture content could decrease to acceptable ranges before continuing to secondary construction phases. The moisture trends observed in the building were proportional to the control samples as both were subjected to similar environmental conditions.
Online Access
Free
Resource Link
Less detail

A Novel LVL- Based Internal Reinforcement for Holes in Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue1908
Year of Publication
2018
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Tapia, Cristóbal
Aicher, Simon
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Mechanical Properties
Keywords
Hybrid Build Up
Parametric Study
Finite Element Method (FEM)
Reinforcement
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23,2018. Seoul, Republic of Korea
Online Access
Free
Resource Link
Less detail

Seismic Behaviour of Cross-Laminated Timber Structures: A State-of-the-Art Review

https://research.thinkwood.com/en/permalink/catalogue1284
Year of Publication
2018
Topic
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Author
Izzi, Matteo
Casagrande, Daniele
Bezzi, Stefano
Pasca, Dag
Follesa, Maurizio
Tomasi, Roberto
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Seismic
Keywords
Seismic Behaviour
Finite Element Model
Q Factor
Capacity-Based Design
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
Cross-Laminated Timber (CLT) structures exhibit satisfactory performance under seismic conditions. This ispossible because of the high strength-to-weight ratio and in-plane stiffness of the CLT panels, and the capacity ofconnections to resist the loads with ductile deformations and limited impairment of strength. This study sum-marises a part of the activities conducted by the Working Group 2 of COST Action FP1402, by presenting an in-depth review of the research works that have analysed the seismic behaviour of CLT structural systems. Thefirstpart of the paper discusses the outcomes of the testing programmes carried out in the lastfifteen years anddescribes the modelling strategies recommended in the literature. The second part of the paper introduces theq-behaviour factor of CLT structures and provides capacity-based principles for their seismic design.
Online Access
Free
Resource Link
Less detail

State-of-the-Art Review of Displacement-Based Seismic Design of Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2123
Year of Publication
2018
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Loss, Christiano
Tannert, Thomas
Tesfamariam, Solomon
Publisher
Elsevier
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Performance Based Design
Direct Displacement-Based Design
Hybrid Structures
N2 Method
Design Procedures
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper discusses the state-of-the-art of displacement-based seismic design (DBD) methods and their applications to timber buildings. First, an in-depth review of the DBD methods is presented, focusing in particular on the direct, modal and N2 methods. Then, paper presents DBD application on a wide range of construction systems, including both traditional light-frame structures as well as the emerging sector of tall and hybrid timber buildings. Finally, potentials of using these DBD methods for seismic design as well as possible implications of including DBD within the next generation of building codes are discussed.
Online Access
Free
Resource Link
Less detail

Glued Laminated Timber Beams Reinforced With Sisal Fibres

https://research.thinkwood.com/en/permalink/catalogue2436
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

Experiments with Tension and Shear Reinforced Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue2209
Year of Publication
2018
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Blank, Lukas
Frangi, Andrea
Organization
ETH Zurich
Year of Publication
2018
Country of Publication
Switzerland
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Fibre Reinforcement
Bending Resistance
Load Bearing Capacity
Language
English
Research Status
Complete
Series
IBK Bericht
Online Access
Free
Resource Link
Less detail

Novel Internally LVL-Reinforced Glued Laminated Timber Beams with Large Holes

https://research.thinkwood.com/en/permalink/catalogue1303
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Aicher, Simon
Tapia, Cristóbal
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Holes
Reinforcement
Beech
Load Capacity
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
A novel timber composite is presented, consisting of glued laminated timber (GLT) from softwoods and intercalated cross-layered plates of laminated veneer lumber (LVL) made of hardwood species, specifically beech. The structure is especially suited for beams with multiple, large rectangular holes, where the LVL acts as a highly efficient internal reinforcement and contributes to a damage-tolerant ultimate load behavior. The load capacity of the composite beam is not induced by the stress concentrations at the corners of the hole, which, in contrast to generic GLT, lead to a sudden propagation of cracks and brittle failure. It is shown that the structure, including the holes, can be designed analytically in a transparent manner by using beam theory, a parallel system approach, and modifications from FEM analysis for the verification of tensile forces at the hole periphery. The composite, firstly used in a recent multi-story building in Australia, significantly improves the competitiveness of timber in building works, which have been limited to steel and reinforced concrete structures.
Online Access
Free
Resource Link
Less detail

Bending Resistance and Deformation Capacity of Fibre Reinforced Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue2208
Year of Publication
2018
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Blank, Lukas
Organization
ETH Zurich
Year of Publication
2018
Country of Publication
Switzerland
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Bending Resistance
Deformation Capacity
Ultimate Load
Fibre Reinforcement
Language
English
Research Status
Complete
Series
IBK Bericht
Online Access
Free
Resource Link
Less detail

Bondline Shear Strength and Wood Failure of European and Tropical Hardwood Glulams

https://research.thinkwood.com/en/permalink/catalogue1372
Year of Publication
2018
Topic
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Aicher, Simon
Ahmad, Zakiah
Hirsch, Maren
Publisher
Springer Berlin Heidelberg
Year of Publication
2018
Country of Publication
Germany
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Keywords
Keruing
Melangangai
Light Red Meranti
Sweet Chestnut
Oak
Beech
Ash
Teak
Hardwood
Shear Strength
Bondlines
Adhesives
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
ISSN
1436-736X
Summary
The study reports on block shear investigations with bondlines of face-glued laminations and matched solid wood specimens from hardwood glulam (GLT) beams produced industrially from eight technically and stand volume-wise important species. The European hardwoods comprised oak, beech, sweet chestnut and ash and the tropical species were teak, keruing, melangangai and light red meranti. The adhesives were phenol-resorcinol and melamine-urea. When combining all species in one sample, a rather strong linear relationship of bond and wood shear strength was observed. The ratio of bond vs. wood shear strength was for all species on the mean value level = 0.9, and likewise (with one exception) for the respective strengths’ 5%-quantiles. Consistent with literature, the test results showed no significant correlations between bond shear strength and density, wood shear strength and wood failure percentage of individual species, respectively. The investigations render the methodological basics of some international standards on bond quality verification as being inappropriate. New, empirically validated hardwood GLT bond requirements are proposed for discussion and implementation at the CEN and ISO levels. The strength ratio specifications reflect respective ANSI provisions, yet the reference quantity wood shear strength is now determined in an unbiased manner from matched GLT specimens. The wood failure verification proposal is based on the 10%-quantile and mean level for initial type testing and factory production control. The requirements further account for the pronounced difference observed in scatter of wood failure between European and tropical species.
Online Access
Free
Resource Link
Less detail

Experimental Investigation of Flexural Behavior of Glulam Beams Reinforced with Different Bonding Surface Materials

https://research.thinkwood.com/en/permalink/catalogue1312
Year of Publication
2018
Topic
Mechanical Properties
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Uzel, Murat
Togay, Abdullah
Anil, Özgür
Sögütlü, Cevdet
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Connections
Keywords
Epoxy
Polyurethane
Adhesives
Load-Displacement
Ultimate Load Capacity
Ductility
Stiffness
Energy Dissipation
Failure Mechanisms
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
In this study, flexuralbehaviors of glue laminated timber beams manufactured from Pinussylvestristree were investigated by comparing the results with those of massive timber beams. The main variables considered in the study were number of laminations, types of adhesive materials and reinforcement nets used in the lamination surfaces. In scope of the experimental study, glue laminated beams with 5 and 3 lamination layers were manufactured with 90 x 90 mm beam sections. In the lamination process epoxy and polyurethane glue were used. Morever, in order to improve the bond strength at the lamination surface, aluminium, fiberglass and steel wire nets were used at the lamination surfaces. Load–displacement responses, ultimate capacities, ductility ratios, initial stiffness, energy dissipation capacities and failure mechanisms of glue laminated beams were compared with those of massive beams. It was observed that the general bending responses of glue laminated beams were better than those of massive beams. In addition to that the use of reinforcement nets at the lamination surfaces increased the ultimate load capacities of the tested beams. The highest ultimate load capacities were oberved from the tests of glue laminated beams manufactured using five laminated layers and retrofitted with polyurethane glue using steel wire reinforcement nets, in the direction normal to the lamination surface. Finally, the finite element simulations of some test specimens were performed to observe the accuracy of finite element technology in the estimation of ultimate capacities of glue laminated timber beams.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.