Skip header and navigation

10 records – page 1 of 1.

Long-term Testing of Timber-Steel Hybrid Beams

https://research.thinkwood.com/en/permalink/catalogue1754
Year of Publication
2016
Topic
Serviceability
Mechanical Properties
Material
Steel-Timber Composite
Application
Beams
Author
Riola Parada, Felipe
Winter, Wolfgang
Tavoussi, Kamyar
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Steel-Timber Composite
Application
Beams
Topic
Serviceability
Mechanical Properties
Keywords
Multi-Storey
Long-term
Bending Stiffness
Creep
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5015-5022
Online Access
Free
Resource Link
Less detail

Dynamic Performance of Timber and Timber-Concrete Composite Flooring Systems

https://research.thinkwood.com/en/permalink/catalogue229
Year of Publication
2013
Topic
Connections
Serviceability
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Rijal, Rajendra
Organization
University of Technology Sydney
Year of Publication
2013
Country of Publication
Australia
Format
Thesis
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Connections
Serviceability
Keywords
Connections
Costs
Fasteners
Finite Element Model
Long Span
Multi-Storey
Sustainability
Vibrations
Small Scale
Static Load Tests
Damage Index (DI) Method
Loss of Composite Action Index (LCAI)
Language
English
Research Status
Complete
Summary
The work presented in this thesis deals with the investigation of the dynamic performance of timber only and TCC flooring systems, which is one of the sub-objectives of the research focus at UTS. In particular, the presented research assesses the dynamic performance of long-span timber and TCC flooring systems using different experimental und numerical test structures. For the experimental investigations, experimental modal testing and analysis is executed to determine the modal parameters (natural frequencies, damping ratios and mode shapes) of various flooring systems. For the numerical investigations, finite element models are calibrated against experimental results, and are utilised for parametric studies for flooring systems of different sizes. Span tables are generated for both timber and TCC flooring systems that can be used in the design of long-span flooring systems to satisfy the serviceability fundamental frequency requirement of 8 Hz or above. To predict the fundamental frequency of various TCC beams and timber floor modules (beams), five different analytical models are utilised and investigated. To predict the cross-sectional characteristics of TCC systems and to identify the effective flexural stiffness of partially composite beams, the “Gamma method” is utilised. [...] two novel methods are developed in this thesis that determines the degree of composite action of timber composite flooring systems using only measurements from non-destructive dynamic testing. The core of both methods is the use of an existing mode-shape-based damage detection technique, namely, the Damage Index (DI) method to derive the loss of composite action indices (LCAIs) named as LCAI1 and LCAI2. The DI method utilises modal strain energies derived from mode shape measurements of a flooring system before and after failure of shear connectors. The proposed methods are tested and validated on a numerical and experimental timber composite beam structure consisting of two LVL components (flange and web). To create different degrees of composite action, the beam is tested with different numbers of shear connectors to simulate the failure of connection screws. The results acquired from the proposed dynamic-based method are calibrated to make them comparable to traditional static-based composite action results. It is shown that the two proposed methods can successfully be used for timber composite structures to determine the composite action using only mode shapes measurements from dynamic testing.
Online Access
Free
Resource Link
Less detail

Timber-Steel Hybrid Beams for Multi-Storey Buildings: Final Report

https://research.thinkwood.com/en/permalink/catalogue1687
Year of Publication
2016
Topic
Mechanical Properties
Material
Steel-Timber Composite
Application
Hybrid Building Systems
Beams
Author
Winter, Wolfgang
Tavoussi, Kamyar
Riola Parada, Felipe
Bradley, Andrew
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Steel-Timber Composite
Application
Hybrid Building Systems
Beams
Topic
Mechanical Properties
Keywords
Multi-Storey
Short-term
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4210-4219
Summary
Timber-steel hybrid beams have been proposed, tested and analyzed for their use in multi-storey buildings. After the first concepts and tests were presented in the WCTE 2014, two whole testing series are finished and their results globally presented and analyzed. The beams fulfilled all the expectations and therefore can be presented as a reliable possibility for future proposals of timber-based frame multi-storey buildings. The present paper presents a summary of the part regarding hybrid beams inside the research project “Timber based mixed systems for dense construction in urban areas” carried out by the Institute of Structural Design and Timber Engineering of the Vienna University of Technology.
Online Access
Free
Resource Link
Less detail

Semi-Rigid Joints of Timber-Steel Hybrid Beams for Multi-Storey Buildings

https://research.thinkwood.com/en/permalink/catalogue1755
Year of Publication
2016
Topic
Design and Systems
Connections
Mechanical Properties
Material
Steel-Timber Composite
Application
Beams
Frames
Author
Tavoussi, Kamyar
Winter, Wolfgang
Bradley, Andrew
Riola Parada, Felipe
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Steel-Timber Composite
Application
Beams
Frames
Topic
Design and Systems
Connections
Mechanical Properties
Keywords
Multi-Storey
Single Span Tests
Semi-Rigid Joints
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5023-5030
Online Access
Free
Resource Link
Less detail

Timber-Steel Hybrid Beams for Multi-Storey Buildings: Design Criteria, Calculation and Tests

https://research.thinkwood.com/en/permalink/catalogue623
Year of Publication
2014
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Tavoussi, Kamyar
Winter, Wolfgang
Pixner, Tamir
Riola Parada, Felipe
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Keywords
Timber-Steel Hybrid
Multi-Storey
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Timber-steel hybrid elements are structurally reliable, clean and fast to assemble and disassemble, light, ecologic and economic. Design criteria and a calculation model for beams were developed and a series of real scale tests were carried out in order to check their performance. The results proved to be satisfactory and promising for the final objective of building structural frames for different types of multi-story buildings.
Online Access
Free
Resource Link
Less detail

Impact of Air-Gap Design to Hygro-thermal Properties and Mould Growth Risk Between Concrete Foundation and CLT Frame

https://research.thinkwood.com/en/permalink/catalogue1327
Year of Publication
2017
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Fedorik, Filip
Haapala, Antti
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Serviceability
Moisture
Keywords
Hygrothermal
Mould
Concrete
Multi-Storey
Moisture Content
Airflow
Language
English
Research Status
Complete
Series
Energy Procedia
Summary
The presented work deals with hygro-thermal numerical simulation and mould growth risk evaluation between concrete foundation and frame of multi-story building made of CLT element modules. Structural CLT modules represent an approach towards wood material utilization in construction as its strength achieves markedly higher values then common structural wooden elements and makes rapid erection of the building possible. Although there are great promises that the novel CLT structures will gain ground in high-rise buildings market with apparent benefits in sustainability and inhabitant comments regarding ambience and acoustics, it is important to analyse their structural health and hygro-thermal conditions. The highest risk of unfavourable hygro-thermal conditions is usually presented in location characterized by thermal bridge, such as foundation, window-wall, wall-roof and wall-floor junctions. It is also of significant importance to analyse junctions between materials, whether wood, composite, mortar or concrete. A certain combination of thermal and humidity conditions in exposed time causes mould growth initiation that may lead to deterioration of structural material and unhealthy indoor environment. In this case study, the moisture content and air-flow in the junction and open space in structural design details between the first floor (of concrete) housing joint warehouse and technical spaces and the residential upper floors made of CLT modules is analysed. Conditions leading to probable moisture-derived mould issues and design parameters leading to sufficient ventilation according to Mould Index modelling are presented.
Online Access
Free
Resource Link
Less detail

Ambient Vibration Testing and Modal Analysis of Multi-Storey Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue237
Year of Publication
2014
Topic
Acoustics and Vibration
Wind
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Reynolds, Thomas
Bolmsvik, Åsa
Vessby, Johan
Chang, Wen-Shao
Harris, Richard
Bawcombe, Jonathan
Bregulla, Julie
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Serviceability
Keywords
Modal Properties
Multi-Storey
Damping
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The ambient movement of three modern multi-storey timber buildings has been measured and used to determine modal properties. This information, obtained by a simple, unobtrusive series of tests, can give insights into the structural performance of these forms of building, as well as providing information for the design of future, taller timber buildings for dynamic loads. For two of the buildings, the natural frequency has been related to the lateral stiffness of the structure, and compared with that given by a simple calculation. In future tall timber buildings, a new design criterion is expected to become important: deflection and vibration serviceability under wind load. For multi-storey timber buildings there is currently no empirical basis to estimate damping for calculation of wind-induced vibration, and there is little information for stiffness under wind load. This study therefore presents a method to address those gaps in knowledge.
Online Access
Free
Resource Link
Less detail

A Mechanics Based Approach for Determining Deflections of Stacked Multi-Storey Wood Based Shear Walls

https://research.thinkwood.com/en/permalink/catalogue738
Year of Publication
2013
Topic
Mechanical Properties
Serviceability
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Newfield, Grant
Ni, Chun
Wang, Jasmine
Organization
Canadian Wood Council
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Serviceability
Keywords
Multi-Storey
Deflection
Flexural Deformations
Shear
Language
English
Research Status
Complete
Summary
The 2009 edition of CSA Standard O86, Engineering Design in Wood (CSA 2009), provides an equation for determining the deflection of shear walls. It is important to note that this equation only works for a single-storey shear wall with load applied at the top of the wall. While the equation captures the shear and flexural deformations of the shear wall, it does not account for moment at the top of the wall and the cumulative effect due to rotation at the bottom of the wall, which would be expected in a multi-storey structure. In this fact sheet, a mechanics-based method for calculating deflection of a multi-storey wood-based shear wall is presented.
Online Access
Free
Resource Link
Less detail

The Long Term Instrumentation of the NMIT Arts Building - Expan Shear Walls

https://research.thinkwood.com/en/permalink/catalogue1857
Year of Publication
2018
Topic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Author
Morris, Hugh
Zhu, Maggie
Wang, Michelle
Publisher
New Zealand Timber Design Society
Year of Publication
2018
Country of Publication
New Zealand
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Topic
Design and Systems
Keywords
Multi-Storey
Shear
Post Tensioning
Wall Shortening
Monitoring
Connections
Instrumentation
Language
English
Research Status
Complete
Series
New Zealand Timber Design Journal
Online Access
Free
Resource Link
Less detail

Multi-Storey Residential Buildings in CLT - Interdisciplinary Principles of Design and Construction

https://research.thinkwood.com/en/permalink/catalogue500
Year of Publication
2014
Topic
Serviceability
Moisture
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Ringhofer, Andreas
Schickhofer, Gerhard
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Moisture
Design and Systems
Keywords
Moisture Ingress
Critical Building Zones
Efficiency of Construction
Multi-Storey
Residential
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Cross-laminated timber (CLT) is a very efficient and powerful building material and thus recently discovered for the erection of multi-storey timber towers. In our paper, we focus on building science and services related topics regarding these constructions. Thereby, we firstly identify moisture ingress as main problem worsening their durability and thus discuss possible detail solutions for both external and internal critical building zones such as flat roof, balcony system and wet rooms. The second main topic we are concentrating in this paper are simple measures to increase the efficiency of CLT constructions by simplifying and improving their structural systems (floors, walls and connections). Both topics are connected by the major importance of interdisciplinary thinking and acting when building with CLT.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.