Skip header and navigation

10 records – page 1 of 1.

Timber Concrete Composite Beams with Ductile Failure Modes

https://research.thinkwood.com/en/permalink/catalogue1700
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Bridges and Spans
Beams
Author
Gendron, Benoit
Salenikovich, Alexander
Sorelli, Luca
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Bridges and Spans
Beams
Topic
Connections
Mechanical Properties
Keywords
Shear Connectors
Push-Out Tests
Bending Tests
Elastic
Failure Modes
Slip
Flexural Behaviour
Ductile
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4368-4377
Summary
In the last 15 years timber-concrete composite (TCC) systems have gained market share around the world. To facilitate acceptance of this construction method and to set basis for building TCC bridges in the Province of Quebec, the authors conducted a test program on TCC beams with continuous shear connectors. It included push-out...
Online Access
Free
Resource Link
Less detail

Timber-Concrete Composite Bridges: State-of-the-Art Review

https://research.thinkwood.com/en/permalink/catalogue2125
Year of Publication
2013
Topic
Design and Systems
General Information
Material
Timber-Concrete Composite
Application
Bridges and Spans

Assessment and Optimisation of CFRP Reinforced Glulam Beams - A Feasibility Study in Design Stage Reinforcement Configurations for Pedestrian Bridge Applications

https://research.thinkwood.com/en/permalink/catalogue2458
Year of Publication
2019
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans

100-Year Performance of Timber-Concrete Composite Bridges in the United States

https://research.thinkwood.com/en/permalink/catalogue2561
Year of Publication
2020
Topic
Serviceability
Application
Bridges and Spans
Author
Wacker, James
Dias, Alfredo
Hosteng, Travis
Year of Publication
2020
Country of Publication
United States
Format
Journal Article
Application
Bridges and Spans
Topic
Serviceability
Keywords
Concrete
Composite
Superstructure
Performance
Inspection
Language
English
Research Status
Complete
Series
Journal of Bridge Engineering
Summary
The use of timber–concrete composite (TCC) bridges in the United States dates back to approximately 1924 when the first bridge was constructed. Since then a large number of bridges have been built, of which more than 1,400 remain in service. The oldest bridges still in service are now more than 84 years old and predominately consist of two different TCC systems. The first system is a slab-type system that includes a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system is a stringer system that includes either sawn timber or glulam stringers supporting a concrete deck top layer. The records indicate that most of the TCC highway bridges were constructed during the period of 1930–1960. The study presented in this paper discusses the experience and per-formance of these bridge systems in the US. The analysis is based on a review of the relevant literature and databases complemented with field inspections conducted within various research projects. Along with this review, a historical overview of the codes and guidelines available for the design of TCC bridges in the US is also included. The analysis undertaken showed that TCC bridges are an effective and durable design alternative for highway bridges once they have shown a high performance level, in some situations after more than 80 years in service with a low maintenance level.
Online Access
Free
Resource Link
Less detail

Effect of Moisture Induced Stresses on the Mechanical Performance of Glulam Beams of Vihantasalmi Bridge

https://research.thinkwood.com/en/permalink/catalogue1609
Year of Publication
2016
Topic
Moisture
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Hradil, Petr
Fortino, Stefania
Salokangas, Lauri
Musci, Alessandro
Metelli, Giovanni
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Moisture
Serviceability
Keywords
Moisture Induced Stresses
Finland
Moisture Gradients
Moisture Content
Hygrothermal
Multi-Fickian Theory
Relative Humidity
Temperature
Eurocode 5
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2159-2167
Summary
The present paper deals with the effect of moisture induced stresses (MIS) on the mechanical performance of a glulam beam of Vihantasalmi Bridge in Finland. MIS caused by high moisture gradients in a cross section of the glulam beam are calculated by a hygro-thermal multi-Fickian model for evaluation of moisture content, relative humidity and temperature in wood that is sequentially coupled with an orthotropic-viscoelasticmechanosorptive model for calculation of wood stresses. Both models, already developed in Abaqus FEM code by some of the authors in their previous works, had to be modified for the Nordic climate. The obtained levels of MIS are then compared to the Eurocode 5 design resistances. The study aims at providing suggestions to future developments of Eurocode 5 for the correct evaluation of the influence of moisture content on service life in timber bridge elements.
Online Access
Free
Resource Link
Less detail

Long-term Testing of Prefabricated Timber-Steel-Concrete Ribbed Decks

https://research.thinkwood.com/en/permalink/catalogue2083
Year of Publication
2018
Topic
Serviceability
Material
Steel-Timber Composite
Timber-Concrete Composite
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans

Effectiveness of Several NDE Technologies in Detecting Moisture Pockets and: Artificial Defects in Sawn Timber and Glulam

https://research.thinkwood.com/en/permalink/catalogue778
Year of Publication
2016
Topic
Serviceability
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Application
Bridges and Spans
Author
Wacker, James
Senalik, Christopher
Wang, Xping
Jalinoos, Frank
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Application
Bridges and Spans
Topic
Serviceability
Keywords
Decay
Douglas-Fir
Moisture Pockets
Non-Destructive Evaluation
Scanning
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria
Summary
Several nondestructive evaluation (NDE) technologies were studied to determine their efficacy as scanning devices to detect internal moisture and artificial decay pockets. Large bridge-sized test specimens, including sawn timber and glued-laminated timber members, were fabricated with various internal defects. NDE Technologies evaluated in this research were ground penetrating radar (GPR), microwave scanning, ultrasonic pulse velocity, ultrasonic shear wave tomography, and impact echo methods. Each NDE technology was used to evaluate a set of seven test specimens over a 2-day period and then raw data scans were processed into two-dimensional, internal defect maps. Several parameters were, compared including the relative size, orientation, and moisture conditions of the internal defect. GPR was the most promising NDE technology and is currently being more rigorously evaluated within the laboratory. The study results will be useful in the further development of a reliable NDE scanning technique that can be utilized to inspect the primary structural components in historic covered timber bridges.
Online Access
Free
Resource Link
Less detail

New Bridge Inspection Approach with Joint UAV and DIC System

https://research.thinkwood.com/en/permalink/catalogue2560
Year of Publication
2020
Topic
Serviceability
Application
Bridges and Spans
Author
Jeong, Euiseok
Seo, Junwon
Wacker, James
Year of Publication
2020
Country of Publication
United States
Format
Conference Paper
Application
Bridges and Spans
Topic
Serviceability
Keywords
UAV
DIC
Inspection
Deterioration
Detection
Language
English
Conference
Structures Congress
Research Status
Complete
Summary
This research aims to develop a new bridge inspection approach using unmanned aerial vehicle (UAV) coupled with digital image correlation (DIC) system. The DIC system incorporating UAV images can measure displacements or strains by analyzing patterns of reference and deformed images. As part of this research, a commercially available UAV, DJI Matrice 210, was integrated with the DIC system using a 3D printed mounting plate, and the joint UAV-DIC system was utilized to inspect a timber bridge girder in the Structure Lab. Then, the UAV-DIC system inspected an existing timber slab bridge in Pipestone, Minnesota, but the system was not able to efficiently identify critical damage due to its instability caused by windy conditions. Therefore, only the UAV equipped with a gimbal camera was operated to perform the bridge inspection. A significant number of images from the UAV were used and analyzed through a conventional image analysis algorithm within ImageJ software for damage quantification. The major conclusion from this research was that the UAV-DIC system was only able to detect and quantify damage (i.e., crack) on the considered girder under almost zero ambient wind conditions, and the UAV integrated with the image analysis algorithm was capable of damage identification and quantification for the inspected bridge.
Online Access
Free
Resource Link
Less detail

Remote Detection of Termite Activity in Wooden Bridge Structures

https://research.thinkwood.com/en/permalink/catalogue1837
Year of Publication
2018
Topic
Serviceability
Application
Bridges and Spans

Drone-Enabled Bridge Inspection Methodology and Application

https://research.thinkwood.com/en/permalink/catalogue1965
Year of Publication
2018
Topic
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Seo, Junwon
Duque, Luis
Wacker, Jim
Publisher
Elsevier
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Serviceability
Keywords
UAV
Bridge
Inspection Methodology
Damage Identification
Field Application
Girder
Superstructure
Language
English
Research Status
Complete
Series
Automation in Construction
Summary
The field of Civil Engineering has lately gained increasing interest in Unmanned Aerial Vehicles (UAV), commonly referred to as drones. Due to an increase of deteriorating bridges according to the report released by the American Society of Civil Engineers (ASCE), a more efficient and cost-effective alternative for bridge inspection is required. The goal of this paper was to analyze the effectiveness of drones as supplemental bridge inspection tools. In pursuit of this goal, the selected bridge for inspection was a three-span gluedlaminated timber girder with a composite concrete deck located near the city of Keystone in the state of South Dakota (SD)...
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.