Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Timber Concrete Composite Beams with Ductile Failure Modes

https://research.thinkwood.com/en/permalink/catalogue1700
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Bridges and Spans
Beams
Author
Gendron, Benoit
Salenikovich, Alexander
Sorelli, Luca
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Bridges and Spans
Beams
Topic
Connections
Mechanical Properties
Keywords
Shear Connectors
Push-Out Tests
Bending Tests
Elastic
Failure Modes
Slip
Flexural Behaviour
Ductile
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4368-4377
Summary
In the last 15 years timber-concrete composite (TCC) systems have gained market share around the world. To facilitate acceptance of this construction method and to set basis for building TCC bridges in the Province of Quebec, the authors conducted a test program on TCC beams with continuous shear connectors. It included push-out...
Online Access
Free
Resource Link
Less detail

Self-Tapping Screws and Threaded Rods as Reinforcement for Structural Timber Elements - A State-Of-The-Art Report

https://research.thinkwood.com/en/permalink/catalogue448
Year of Publication
2015
Topic
Connections
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Author
Dietsch, Philipp
Brandner, Reinhard
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Connections
Serviceability
Keywords
Reinforcement
Threaded Rods
Self-Tapping Screws
Shear Stress
Europe
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
In timber engineering, self-tapping screws, optimized primarily for axial loading, represent the state-of-the-art in fastener and reinforcement technology. Their economic advantages and comparatively easy handling make them one of the first choices for application in both domains. This paper focuses on self-tapping screws and threaded rods applied as reinforcement, illustrating the state-of-the-art in application and design approaches in Europe, in conjunction with numerous references for background information. With regard to medium to large span timber structures which are predominately erected by using linear timber members, from e.g. glued laminated timber, the focus of this paper is on their reinforcement against stresses perpendicular to grain as well as shear. However, latest findings with respect to cross laminated timber are included as well.
Online Access
Free
Resource Link
Less detail

Failure Modes in CLT Connections

https://research.thinkwood.com/en/permalink/catalogue495
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Mohammad, Mohammad
Quenneville, Pierre
Salenikovich, Alexander
Zarnani, Pouyan
Munoz, Williams
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Failure Modes
Brittle Behaviour
Canada
New Zealand
Dowels
Bolts
Rivets
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Information on ductile and brittle failure modes is critical for proper design of timber connections in Crosslaminated Timber (CLT). While considerable research has been conducted in Europe and Canada on the ductile performance of connections in CLT, little is known about the brittle behaviour. This paper presents new information from testing programs and analysis performed in Canada and in New Zealand on the brittle performance of dowel-type fasteners in CLT. The testing programs have been designed to trigger brittle failure modes based on minimum end distances and fasteners spacings specified in the Canadian timber design standard. Timber rivets and bolts/dowels are covered under this study. At the time of writing of this abstract, the testing program is advancing and results will be available at the time of paper submission.
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Failure Modes for Fire Conditions

https://research.thinkwood.com/en/permalink/catalogue188
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Emberley, Richard
Torero, José
Year of Publication
2015
Country of Publication
Australia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Adhesives
Charring Rate
Delamination
Codes
Failure Modes
Language
English
Conference
International Conference on Performance-based and Life-cycle Structural Engineering
Research Status
Complete
Notes
December 9-11, 2015, Brisbane, Australia
Summary
Tall timber building designs have utilized cross-laminated timber (CLT) significantly over the past decade due the sustainable nature of timber and the many advantages of using an engineered mass timber product. Several design methods have been established to account for the composite action between the orthogonally adhered timber plies. These methods assume perfect bonding of the adjacent plies by the adhesive. CLT designs methods for timber in fire have also been formulated. These methods rely on the relatively constant charring rate of timber to calculate a sacrificial layer to be added onto the cross-sectional area. While these methods focus on the timber failure mode of reduced cross section by charring, the failure mode of ply delamination is often overlooked and understudied. Due to the reduction of shear and normal strength in the adhesive, the perfect bond assumption can be questioned and a deeper look into the mechanics of CLT composite action and interfacial stress needs be conducted. This paper seeks to highlight the various design methods for CLT design and identify the failure mode of delamination not present in the current design codes.
Online Access
Free
Resource Link
Less detail

Failure Modes and Mechanical Properties of Bracket Anchor Connections for Cross-Laminated-Timber

https://research.thinkwood.com/en/permalink/catalogue2152
Year of Publication
2019
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)

Group Tear-Out in Small-Dowel-Type Timber Connections: Brittle and Mixed Failure Modes of Multinail Joints

https://research.thinkwood.com/en/permalink/catalogue579
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Author
Zarnani, Pouyan
Quenneville, Pierre
Publisher
American Society of Civil Engineers
Year of Publication
2014
Country of Publication
United States
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
dowel-type connections
Load Carrying Capacity
Brittle Failure
Failure Modes
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
In existing wood strength prediction models for parallel to grain failure in timber connections using dowel-type fasteners, different methods consider the minimum, maximum, or summation of the tensile and shear capacities of the failed wood block planes. It is postulated that these methods are not appropriate since the stiffness of the adjacent wood loading the tensile and shear planes differs, and this leads to uneven load distribution among the resisting planes. A closed-form analytical method to determine the load-carrying capacity of wood under parallel-to-grain loading in small-dowel-type connections in timber products is thus proposed. For the wood strength, the stiffness of the adjacent loading volumes and strength of the failure planes subjected to nonuniform shear and tension stresses are considered. The effective wood thickness for the brittle failure mode is derived and related to the elastic deformation of the fastener. A mixed failure mode is also defined (a mixture of brittle and ductile) and depends on the governing ductile failure mode of the fastener. To help the designer, an algorithm is presented that allows the designer to calculate the resistances associated with predictions of the different possible brittle, ductile, and mixed failure modes. The proposed stiffness-based model has already been verified in brittle and mixed failure modes of timber rivet connections. In the research reported in this paper, an extended application is proposed for other small-dowel-type fasteners such as nails and screws. Results of nailed joint tests on laminated veneer lumber (LVL) and the test data available from the literature on glulam confirm the validity of this new method, and show that it can be used as a design provision for wood load-carrying capacity prediction of small-dowel-type timber connections.
Online Access
Free
Resource Link
Less detail

Influence of Orientation and Number of Layers on the Elastic Response and Failure Modes on CLT Floors: Modeling and Parameter Studies

https://research.thinkwood.com/en/permalink/catalogue1418
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Franzoni, Lorenzo
Lebée, Arthur
Lyon, Florent
Forêt, Gilles
Publisher
Springer Berlin Heidelberg
Year of Publication
2016
Country of Publication
Germany
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Failure Modes
Bending
Elastic Behavior
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
ISSN
1436-736X
Summary
In the present paper, the bending behavior of Cross Laminated Timber panels is investigated by means of the linear elastic exact solution from Pagano (1970; 1969). The resulting stresses are the input for a wood failure criterion, which can point out the first-crack load and the respective dominant failure mode. Heterogeneous layers are modeled as equivalent and homogeneous layers. This simplified and deterministic modeling gives results in good agreement with a reference experimental test. A comparison is made with respect to the panel’s global stiffness and failure stages within the apparent elastic stage. Finally, parameter studies are carried out, in order to quantify CLT limitations and advantages. The effect of varying properties like the panel’s slenderness, orientation of transverse layers and number of layers for a fixed total thickness are investigated.
Online Access
Free
Resource Link
Less detail

Reinforcement of Shear Failure with Long Screw in Moment-Resisting Joint

https://research.thinkwood.com/en/permalink/catalogue689
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Author
Nakatani, Makoto
Morita, Hideki
Mori, Takuro
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Topic
Connections
Mechanical Properties
Keywords
Lagscrewbolts
Shear Strength
Panel Zone
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Moment resisting joint with lagscrewbolts shows good mechanical performance and aesthetic. However, beam and column joints rarely showed a brittle shear failure in a panel zone of a column in previous studies. Therefore, a joint system reinforced by long screws was developed to prevent from the failure in this research. The maximum shear strength of the joint increased with increasing the number of long screws. However, the average of six screws specimens was lower than that of four screws, because the glulam and some of the screws were damaged due to the narrow space between the screws during an inserting process of the screws.
Online Access
Free
Resource Link
Less detail

New Design Approach for Controlling Brittle Failure Modes of Small-Dowel-Type Connections in Cross-Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue155
Year of Publication
2015
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Zarnani, Pouyan
Quenneville, Pierre
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Design and Systems
Keywords
Brittle Failure Mode
Fasteners
Stiffness
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
The introduction of Cross-laminated Timber (CLT) as an engineered timber product has played a significant role in considerable progress of timber construction in recent years. Extensive research has been conducted in Europe and more recently in Canada to evaluate the fastening capacity of different types of fasteners in CLT. While ductile capacities calculated using the yield limit equations are quite reliable for fastener resistance in connections, however, they do not take into account the possible brittle failure mode of the connection which could be the governing failure mode in multi-fastener joints. Therefore, a stiffness-based design approach which has already been developed by the authors and verified in LVL, glulam and lumber has been adapted to determine the block-tear out resistance of connections in CLT by considering the effect of perpendicular layers. The comparison between the test results on riveted connections conducted at the University of Auckland (UoA) and the Karlsruhe Institute of Technology (KIT) and the predictions using the new model and the one developed for uniformly layered timber products show that the proposed model provides higher predictive accuracy and can be used as a design provision to control the brittle failure of wood in CLT connections.
Online Access
Free
Resource Link
Less detail

Design of Shear Reinforcement for Timber Beams

https://research.thinkwood.com/en/permalink/catalogue1109
Year of Publication
2013
Topic
Connections
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Dietsch, Philipp
Kreuzinger, Heinrich
Winter, Stefan
Year of Publication
2013
Country of Publication
Germany
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Design and Systems
Keywords
Shear
Reinforcement
Fractured
Unfractured
Language
English
Conference
CIB-W18 Meeting
Research Status
Complete
Notes
August 26-29, 2013, Vancouver, Canada p.193-209
Summary
The use of glulam beams with changing depth offers the possibility to adapt the section modulus to the bending moment. In the case of single-span beams under uniformly distributed load, however, a change in beam depth will lead to a contrary effect for the shear stresses, see Figure 1. Curved and pitched cambered beams feature not only high utilization rates in bending but also areas of high tension stresses perpendicular to the grain and shear parallel to the grain stresses, two stress components for which timber features only small capacities as well as brittle failure modes. Out of 245 cases of damaged or failed large-span timber structures, evaluated in [1], several failures document the possibility of a shear fracture (full separation) developing in grain direction from the curved part towards the supports, partly followed by a failure of the beam in flexural tension due to a change in stress distribution resulting from the change in section modulus. Reinforcements against tension stresses perpendicular to the grain in form of fully threaded screws or threaded rods can be considered state of the art [2], [3]. With respect to their application as shear reinforcement, not many research results are yet available [4], [5], resulting in a lack of experimentally validated design approaches. Within this paper, approaches to design shear reinforcement for glulam beams in the unfractured and the fractured state are presented, validated and discussed. The moment of failure, i.e. the transition from the unfractured to the fractured state is characterized by dynamic effects. This situation is not covered in this paper. A possible approach is given in [1]. The same applies to the subject of moisture induced stresses, resulting from the reinforcement restricting the free shrinkage or swelling of the glulam beam.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.