Skip header and navigation

10 records – page 1 of 1.

Development of Urban Timber Buildings using Glued Laminated Timber having Fire Resistance

https://research.thinkwood.com/en/permalink/catalogue2431
Year of Publication
2019
Topic
Fire
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Miyazaki, K.
Matsuzaki, H.
Publisher
IOP Publishing Ltd
Year of Publication
2019
Country of Publication
Japan
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Design and Systems
Keywords
Mid-Rise
High-Rise
Fire Resistance
Language
English
Research Status
Complete
Series
IOP Conference Series: Earth and Environmental Science
Online Access
Free
Resource Link
Less detail

Connections for Stackable Heavy Timber Modules in Midrise to Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue2087
Year of Publication
2019
Topic
Connections
Design and Systems
Seismic
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Seismic
Keywords
Modular
Intra-module Connection
Inter-module Vertical Connection
Inter-module horizontal Connection
Mid-Rise
Tall Wood
Screws
Load Transfer
Steel Angle Bracket
Stiffness
Strength
Ductility
Language
English
Research Status
Complete
Summary
In Phase I (2018-19) of this project on Prefabricated Heavy Timber Modular Construction, three major types of connections used in a stackable modular building were studied: intramodule connection, inter-module vertical connection, and inter-module horizontal connection. The load requirement and major design criteria were identified...
Online Access
Free
Resource Link
Less detail

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: Fire Performance of Cross-Laminated Timber with Adhesives Conforming to 2018 edition of ANSI/APA PRG-320

https://research.thinkwood.com/en/permalink/catalogue2091
Year of Publication
2019
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Dagenais, Christian
Ranger, Lindsay
Bénichou, Noureddine
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Mid-Rise
High-Rise
Adhesives
Temperature
Charring Rate
Language
English
Research Status
Complete
Summary
The objective of this research is to evaluate CLT face-bonded with adhesives that meet the new 2018 ANSI/APA PRG 320 with respect to elevated temperature requirements and their effects on the resulting charring rates when exposed to the standard time-temperature curve of CAN/ULC S101 (similar exposure to ASTM E119)...
Online Access
Free
Resource Link
Less detail

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: Fire Resistance of Mass Timber Laminated Elements

https://research.thinkwood.com/en/permalink/catalogue2088
Year of Publication
2019
Topic
Fire
Material
Timber (unspecified)
Application
Walls
Floors
Wood Building Systems
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Timber (unspecified)
Application
Walls
Floors
Wood Building Systems
Topic
Fire
Keywords
Fire Resistance
Mid-Rise
High-Rise
Charring
Language
English
Research Status
Complete
Summary
This project assesses the fire resistance of laminated timber structural systems as wall and floor assemblies. Full-scale tests were conducted to assess structural fire resistance and charring behaviour. This research could be used to expand current fire design provisions and support inclusion of these types of assemblies into Annex B of CSA O86.
Online Access
Free
Resource Link
Less detail

Costs and Procurement for Cross-Laminated Timber in Mid-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue2112
Year of Publication
2019
Topic
Cost
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Lien, Anne Gunnarshaug
Lolli, Nicola
Publisher
Kaunas University of Technology
Year of Publication
2019
Country of Publication
Lithuania
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Cost
Environmental Impact
Keywords
Mid-Rise
Greenhouse Gases
Student Residence
Language
English
Research Status
Complete
Series
Journal of Sustainable Architecture and Civil Engineering
ISSN
2335–2000
Online Access
Free
Resource Link
Less detail

Disproportionate Collapse Prevention Analyses for Mid-Rise Cross-Laminated Timber Platform-Type Buildings

https://research.thinkwood.com/en/permalink/catalogue2288
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
General Application
Wood Building Systems

Illustrated Guide for Designing Wood-Frame Buildings in Alberta to Meet the National Energy Code of Canada for Buildings

https://research.thinkwood.com/en/permalink/catalogue1917
Year of Publication
2019
Topic
Design and Systems
Material
Timber (unspecified)
Application
Building Envelope

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: Rehabilitation of Mass Timber Following Fire and Sprinkler Activation

https://research.thinkwood.com/en/permalink/catalogue2089
Year of Publication
2019
Topic
Fire
Moisture
Material
Timber (unspecified)
Application
Wood Building Systems
Author
Ranger, Lindsay
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Timber (unspecified)
Application
Wood Building Systems
Topic
Fire
Moisture
Keywords
Mid-Rise
High-Rise
Damage
Repairs
Sprinklers
Language
English
Research Status
Complete
Summary
The intent of this project is to research evaluation and rehabilitation methods that are applicable to mass timber structures following a fire. This includes addressing both fire damage and water damage from sprinkler activation and/or the use of firefighting hoses. This report provides an overview of the type of damage that might be expected following a fire and methods that might reduce potential damage (including design elements and firefighting tactics). Current and existing rehabilitation methods for wood construction will be reviewed and their applicability to mass timber structures will be discussed. This includes the ability to conduct condition assessments and repairs on building elements that can be done in place. The overall objective is to reduce uncertainty related to mass timber construction, which ultimately would allow for more accurate risk evaluation by insurance companies.
Online Access
Free
Resource Link
Less detail

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: Infrared Imaging for Fire Risks

https://research.thinkwood.com/en/permalink/catalogue2090
Year of Publication
2019
Topic
Fire
Site Construction Management
Material
Timber (unspecified)
Application
Wood Building Systems

Life Cycle Assessment of Katerra's Cross-Laminated Timber (CLT) and Catalyst Building: Final Report

https://research.thinkwood.com/en/permalink/catalogue2545
Year of Publication
2019
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Author
Simonen, Kate
Huang, Monica
Ganguly, Indroneil
Pierobon, Francesca
Chen, Cindy
Organization
Carbon Leadership Forum
Center for International Trade in Forest Products
Year of Publication
2019
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
LCA
Mid-Rise
Environmental Performance
Language
English
Research Status
Complete
Summary
Katerra has developed its own cross-laminated timber (CLT) manufacturing facility in Spokane Valley, Washington. This 25,100 m2 (270,000 ft2 ) factory is the largest CLT manufacturing facility in the world, and is capable of producing approximately 187,000 m3 of CLT per year. Katerra has also established a vertically integrated supply chain to provide the wood for the CLT factory. Production started in summer of 2019. Katerra commissioned the Carbon Leadership Forum (CLF) and Center for International Trade in Forest Products (CINTRAFOR) at the University of Washington to analyze the environmental impacts of its CLT as well as the Catalyst Building in Spokane, Washington. The Catalyst is a 15,690 m2 (168,800 ft2), five-story office building that makes extensive use of CLT as a structural and design element. Jointly developed by Avista and McKinstry, Katerra largely designed and constructed the building, and used CLT produced by Katerra’s new factory. Performing a life cycle assessment (LCA) on Katerra’s CLT will allow Katerra to explore opportunities for environmental impact reduction along their supply chain and improve their CLT production efficiency. Performing an LCA on the Catalyst Building will enable Katerra to better understand life cycle environmental impacts of mass timber buildings and identify opportunities to optimize environmental performance of mid-rise CLT structures. The goal, scope, methodology, and results of this analysis are detailed in this report.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.