Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Dynamic Testing of Multi-Storey Post-Tensioned Glulam Building: Planning, Design and Numerical Analysis

https://research.thinkwood.com/en/permalink/catalogue634
Year of Publication
2012
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Smith, Tobias
Pampanin, Stefano
Carradine, David
Di Cesare, Antonio
Carlo Ponzo, Felice
Auletta, Gianluca
Nigro, Domenico
Simonetti, Michele
Mossucca, Antonello
Year of Publication
2012
Country of Publication
Portugal
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Post-Tensioned
Dissipative Steel Angles
Dynamic Testing
Damping Ratio
Language
English
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
Summary
The following paper describes the first stage of dynamic testing of a post-tensioned timber building to be performed in the structural laboratory of the University of Basilicata in Potenza, Italy as part of a series of experimental tests in collaboration with the University of Canterbury in Christchurch, New Zealand. During this stage of testing a 3-dimensional, 3-storey post-tensioned timber structure will be tested. The specimen is 2/3rd scale and made up of frames in both directions composed of post-tensioned timber. The specimen will be tested both with and without the addition of dissipative steel angles which are designed to yield at a certain level drift. These steel angles release energy through hysteresis during movement thus increasing damping. The following paper discusses the testing set-up and preliminary numerical predictions of the system performance. Focus will be placed on damping ratios, displacements and accelerations.
Online Access
Free
Resource Link
Less detail

Numerical Models for Dynamic Properties of a 14 Storey Timber Building

https://research.thinkwood.com/en/permalink/catalogue274
Year of Publication
2012
Topic
Design and Systems
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Utne, Ingunn
Organization
Norwegian University of Science and Technology
Year of Publication
2012
Country of Publication
Norway
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Connections
Keywords
Dynamic Properties
Finite Element Model
Language
English
Research Status
Complete
Summary
The world tallest timber building with height of 45 meters, is planned for Bergen, Norway. In this master thesis the dynamic properties of the case building, as proposed by Sweco and Artec, are investigated. The proposed structural concept with a glulam frame and power-storeys, have never previously been built, and it is desirable to develop and understanding of the dynamic problems concerning this building. Previous work have shown problems with acceleration levels for tall timber building, mostly due to the material properties of timber. Timber has high flexibility and strength combined with low weight. The main aim of the work have been to build a 3D-model of the case building in a finite element program, where numerical methods can be used to find the dynamic properties of the building. The wind load and acceleration levels are investigated, and found to be reasonable compared to various criterions presented. The effect of the stiffness in the connections, as well as the use of apartment modules are investigated. In addition a dynamic analysis is run, and stochastic subspace state space system identification is used to verify the model. This can later be used for verification of the actual building when finished, and will be an important method to determine the actual damping and stiffness. Based on the findings in this work, the concept is assumed feasible, possible with some changes an even better concept is achieved. It will be exciting to see how Sweco will develop the concept further in the next planning phase.
Online Access
Free
Resource Link
Less detail

Numerical Modelling of Water Mist Systems in Protection of Mass Timber Residential Buildings

https://research.thinkwood.com/en/permalink/catalogue2681
Year of Publication
2020
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Author
Elsagan, Nour
Ko, Yoon
Publisher
National Research Council Canada
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Topic
Fire
Keywords
Sprinklers
Fire Suppression
Exposed Timber
Water Mist Systems
Language
English
Research Status
Complete
Summary
"This report presents the findings from a simulation parametric study to investigate the use of water mist systems for a residential compartment fire involving exposed mass timber structures. The fire and suppression models were first validated against experimental data obtained from the NRC fire tests that were conducted under the same project. Seventeen simulations were conducted using Fire Dynamic Simulator (FDS) software. The following parameters were investigated: effect of fuel arrangement and location on fire severity in exposed wood compartment, effect of different finishing on fire severity in compartment, fire and suppression in open space vs compartment, effectiveness of water mist systems in fire suppression in compartments with different finishing. The results show the effectiveness of the water mist system in suppressing the fire in exposed wood compartments where a high heat release is expected due to the high fuel load"--Executive summary, page iv.
Online Access
Free
Resource Link
Less detail

Hybrid Cross Laminated Timber Plates (HCLTP) – Numerical Optimisation Modelling and Experimental Tests

https://research.thinkwood.com/en/permalink/catalogue1751
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Sustersic, Iztok
Brank, Boštjan
Dujic, Bruno
Brezocnik, Jaka
Gavric, Igor
Aicher, Simon
Dill-Langer, Gerhard
Winter, Wolfgang
Fadai, Alireza
Demschner, Thomas
Ledinek, Gregor
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Timber Ribs
Concrete Topping
Ultimate Limit States
Serviceability Limit States
Numerical Modelling
Experimental Tests
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4989-4996
Summary
This paper presents the development of two new types of hybrid cross-laminated timber plates (HCLTP) with an aim to improve structural performance of existing cross-laminated timber plates (Xlam or CLT). The first type are Xlam plates with glued timber ribs and the second type are Xlam plates with a concrete topping. A numerical...
Online Access
Free
Resource Link
Less detail

Connections for Stackable Heavy Timber Modules in Midrise to Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue2087
Year of Publication
2019
Topic
Connections
Design and Systems
Seismic
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Seismic
Keywords
Modular
Intra-module Connection
Inter-module Vertical Connection
Inter-module horizontal Connection
Mid-Rise
Tall Wood
Screws
Load Transfer
Steel Angle Bracket
Stiffness
Strength
Ductility
Language
English
Research Status
Complete
Summary
In Phase I (2018-19) of this project on Prefabricated Heavy Timber Modular Construction, three major types of connections used in a stackable modular building were studied: intramodule connection, inter-module vertical connection, and inter-module horizontal connection. The load requirement and major design criteria were identified...
Online Access
Free
Resource Link
Less detail

Potential for Design Optimisation of a Six-Storey Lightframe Wood Building Using Linear Dynamic Analysis

https://research.thinkwood.com/en/permalink/catalogue1661
Year of Publication
2016
Topic
Mechanical Properties
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Tremblay-Auclair, Jean-Philippe
Salenikovich, Alexander
Frenette, Caroline
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Design and Systems
Keywords
Canada
Braced Frame Model
Linear Dynamic Analysis
Mid-Rise
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3649-3656
Summary
Recently, Canadian building regulations have allowed construction of light-frame wood buildings up to six storeys. Even though equivalent static force procedure (ESFP) is generally used for the seismic design of such buildings, in cases of irregular structures and in high seismic zones a linear dynamic analysis (LDA) is required by the code. However, commercial software has not yet been adapted to the dynamic analysis of this type of structures. In this paper, a design procedure for light-frame wood shear walls using a braced frame model and LDA is proposed and the potential for design optimisation is presented for a six-storey light-frame wood building located in Quebec City in the Eastern Canada. Comparisons between the proposed LDA procedure and ESFP based on the shear distribution, overturning moments, interstorey drifts and total inelastic deflections are shown. Structural advantages of using the proposed LDA are demonstrated.
Online Access
Free
Resource Link
Less detail

Nonlinear Numerical Modelling of FRP Reinforced Glued Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue73
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Raftery, Gary
Harte, Annette
Publisher
ScienceDirect
Year of Publication
2013
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Fiber Reinforced Polymer
Finite Element Model
Flexural
Hybrid
Low-Grade
Model
Modulus of Rupture
Reinforcement
Stiffness
Strength
Spruce
Language
English
Research Status
Complete
Series
Composites Part B: Engineering
Summary
Fibre-reinforced polymers (FRPs) are effective in the flexural stiffening and strengthening of structural members. Such systems can be optimised if accurate numerical models are developed. At present, limited information is available in the literature on numerical models that can predict with good accuracy the nonlinear behaviour of FRP reinforced low-grade glued laminated timber beams. This paper discusses the development of a finite element model, which incorporates nonlinear material modelling and nonlinear geometry to predict the load–deflection behaviour, stiffness, ultimate moment capacity and strain distribution of FRP plate reinforced glued laminated timber beams manufactured from mechanically stress graded spruce. Beams with and without sacrificial laminations are modelled and their performance is compared to unreinforced glued laminated timber beams. The model employed anisotropic plasticity theory for the timber in compression. The failure model used was the maximum stress criterion. Strong agreement was obtained between the predicted behaviour and the associated experimental findings. It was deduced from comparing the results from the numerical model with experimental findings that the FRP plate succeeds in increasing the performance of the adjacent timber significantly. The model is a useful tool for examination of the effect of reinforcement percentage and will be used for optimisation of the hybrid beam.
Online Access
Free
Resource Link
Less detail

Structural Testing for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1829
Year of Publication
2017
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Walls
Wood Building Systems
Organization
Oregon State University
Portland State University
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Mechanical Properties
Keywords
Crushing Test
In-Plane Shear Test
Beam-Column Connection
Panels
Earthquake
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
A. Structural Test Results Summary B. Test 1, 2, 3: 1. CLT Crushing Test Report 2. Bare CLT Wall Panel Test Report 3. CLT In-Plane Shear Wall Test Report C. Glulam Beam-Column Connection Test Report
Online Access
Free
Resource Link
Less detail

Large-Scale Dynamic Testing of Rocking Cross Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue2298
Year of Publication
2018
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Wichman, Sarah
Publisher
University of Washington
Year of Publication
2018
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Tall Wood
Seismic Force Resisting System
Earthquake Resistance
Resilience-Based Seismic Design
Shake Table Test
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Testing and Modeling of a Cross-Laminated Timber Pier-and-Spandrel Seismic Retrofit Solution for Unreinforced Masonry Buildings

https://research.thinkwood.com/en/permalink/catalogue2520
Year of Publication
2019
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

10 records – page 1 of 1.